Description Usage Arguments Value Note Author(s) References See Also Examples
Calls the function svm from the package e1071
that provides an interface to the award-winning LIBSVM routines.
For S4 method information, see svmCMA-methods
1 |
X |
Gene expression data. Can be one of the following:
|
y |
Class labels. Can be one of the following:
WARNING: The class labels will be re-coded to
range from |
f |
A two-sided formula, if |
learnind |
An index vector specifying the observations that
belong to the learning set. May be |
probability |
logical indicating whether the model should allow for probability predictions. |
seed |
Fix random number generator for reproducibility. |
models |
a logical value indicating whether the model object shall be returned |
... |
Further arguments to be passed to |
An object of class cloutput.
Contrary to the default settings in e1071:::svm, the used
kernel is a linear kernel which has turned to be out a better
default setting in the small sample, large number of predictors - situation,
because additional nonlinearity is mostly not necessary there. It
additionally avoids the tuning of a further kernel parameter gamma,
s. help of the package e1071 for details.
Nevertheless, hyperparameter tuning concerning the parameter cost must
usually be performed to obtain reasonale results, s. tune.
Martin Slawski ms@cs.uni-sb.de
Anne-Laure Boulesteix boulesteix@ibe.med.uni-muenchen.de
Christoph Bernau bernau@ibe.med.uni-muenchen.de
Boser, B., Guyon, I., Vapnik, V. (1992)
A training algorithm for optimal margin classifiers.
Proceedings of the fifth annual workshop on Computational learning theory, pages 144-152, ACM Press.
Chang, Chih-Chung and Lin, Chih-Jen : LIBSVM: a library for Support Vector Machines http://www.csie.ntu.edu.tw/~cjlin/libsvm
Schoelkopf, B., Smola, A.J. (2002)
Learning with kernels.
MIT Press, Cambridge, MA.
compBoostCMA, dldaCMA, ElasticNetCMA,
fdaCMA, flexdaCMA, gbmCMA,
knnCMA, ldaCMA, LassoCMA,
nnetCMA, pknnCMA, plrCMA,
pls_ldaCMA, pls_lrCMA, pls_rfCMA,
pnnCMA, qdaCMA, rfCMA,
scdaCMA, shrinkldaCMA
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | ### load Golub AML/ALL data
data(golub)
### extract class labels
golubY <- golub[,1]
### extract gene expression
golubX <- as.matrix(golub[,-1])
### select learningset
ratio <- 2/3
set.seed(111)
learnind <- sample(length(golubY), size=floor(ratio*length(golubY)))
### run _untuned_linear SVM
svmresult <- svmCMA(X=golubX, y=golubY, learnind=learnind,probability=TRUE)
### show results
show(svmresult)
ftable(svmresult)
plot(svmresult)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.