Description Usage Arguments Value Author(s) References See Also Examples
This method constructs a classifier that extracts
Partial Least Squares components used to generate Random Forests, s. rfCMA.
For S4 method information, see pls_rfCMA-methods.
| 1 | 
| X | Gene expression data. Can be one of the following: 
 | 
| y | Class labels. Can be one of the following: 
 WARNING: The class labels will be re-coded to
range from  | 
| f | A two-sided formula, if  | 
| learnind | An index vector specifying the observations that
belong to the learning set. May be  | 
| comp | Number of Partial Least Squares components to extract. Default ist two times the number of different classes. | 
| seed | Fix Random number generator seed to  | 
| models | a logical value indicating whether the model object shall be returned | 
| ... | Further arguments to be passed to  | 
An object of class cloutput. 
Martin Slawski ms@cs.uni-sb.de
Anne-Laure Boulesteix boulesteix@ibe.med.uni-muenchen.de
Boulesteix, A.L., Strimmer, K. (2007).
Partial least squares: a versatile tool for the analysis of high-dimensional genomic data.
Briefings in Bioinformatics 7:32-44.
compBoostCMA, dldaCMA, ElasticNetCMA,
fdaCMA, flexdaCMA, gbmCMA,
knnCMA, ldaCMA, LassoCMA,
nnetCMA, pknnCMA, plrCMA,
pls_ldaCMA, pls_lrCMA,
pnnCMA, qdaCMA, rfCMA,
scdaCMA, shrinkldaCMA, svmCMA
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | ### load Golub AML/ALL data
data(golub)
### extract class labels
golubY <- golub[,1]
### extract gene expression
golubX <- as.matrix(golub[,-1])
### select learningset
ratio <- 2/3
set.seed(111)
learnind <- sample(length(golubY), size=floor(ratio*length(golubY)))
### run PLS, combined with Random Forest
#result <- pls_rfCMA(X=golubX, y=golubY, learnind=learnind)
### show results
#show(result)
#ftable(result)
#plot(result)
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.