Description Usage Arguments Value Note Author(s) References See Also Examples
Linear Discriminant Analysis combined with the James-Stein-Shrinkage approach of Schaefer and Strimmer (2005) for the covariance matrix.
Currently still an experimental version.
For S4
method information, see shrinkldaCMA-methods
1 | shrinkldaCMA(X, y, f, learnind, models=FALSE, ...)
|
X |
Gene expression data. Can be one of the following:
|
y |
Class labels. Can be one of the following:
WARNING: The class labels will be re-coded to
range from |
f |
A two-sided formula, if |
learnind |
An index vector specifying the observations that
belong to the learning set. May be |
models |
a logical value indicating whether the model object shall be returned |
... |
Further arguments to be passed to |
An object of class cloutput
.
This is still an experimental version.
Covariance shrinkage is performed by calling functions
from the package corpcor
.
Variable selection is not necessary.
Martin Slawski ms@cs.uni-sb.de
Anne-Laure Boulesteix boulesteix@ibe.med.uni-muenchen.de
Schaefer, J., Strimmer, K. (2005).
A shrinkage approach to large-scale covariance estimation and implications for functional genomics.
Statististical Applications in Genetics and Molecular Biology, 4:32.
compBoostCMA
, dldaCMA
, ElasticNetCMA
,
fdaCMA
, flexdaCMA
, gbmCMA
,
knnCMA
, ldaCMA
, LassoCMA
,
nnetCMA
, pknnCMA
, plrCMA
,
pls_ldaCMA
, pls_lrCMA
, pls_rfCMA
,
pnnCMA
, qdaCMA
, rfCMA
,
scdaCMA
, svmCMA
.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | ### load Golub AML/ALL data
data(golub)
### extract class labels
golubY <- golub[,1]
### extract gene expression
golubX <- as.matrix(golub[,-1])
### select learningset
ratio <- 2/3
set.seed(111)
learnind <- sample(length(golubY), size=floor(ratio*length(golubY)))
### run shrinkage-LDA
result <- shrinkldaCMA(X=golubX, y=golubY, learnind=learnind)
### show results
show(result)
ftable(result)
plot(result)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.