#Bayesian GMM without knowing prior on missingness parameters
#This cannot be run in parallel
#The log(scale) and location parameters are drawn from a bivariate normal distribution with known mean and whose variance is drawn from an inverse-Wishart
Bayes.GMM.Dependent <- function(Y, C, K.ind, p.min.1=0, p.min.2=0, t.df=4, y0.mean, log.a.mean, df.wishart=1.1, y0.start=NULL, a.start=NULL, prop.y0.sd=0.2, prop.a.sd=0.2, n.iter=1e4, n.burn=1e3, save.every=10, ind.variance=NULL, include.norm=T, min.prob=1/n) {
n <- ncol(Y)
p <- nrow(Y)
if (is.null(ind.variance)) {ind.variance <- 1:p}
if (is.logical(ind.variance[1])) {ind.variance <- which(ind.variance == T)}
p.var <- length(ind.variance)
V.wishart=diag(x = 1/df.wishart, nrow = 2, ncol = 2) #This is not necessary
invV.wishart <- diag(x = 0.1, nrow = 2, ncol = 2)
#Initialize estimates for variance#
Sigma.theta <- diag(1, nrow=2, ncol=2)
max.store <- 1e4
if (p.min.1 <= 0) {p.min.1 <- 0; p.min.2 <- 0}
if (p.min.1 > 0 || min.prob <= 0) {min.prob <- 0}
if (save.every <= 0) {
save.every <- 0
} else {
save.every <- round(save.every)
if (floor(n.iter/save.every) >= max.store) {save.every <- floor(n.iter/max.store)}
}
if (is.null(y0.start) || is.null(a.start)) {
y0.start <- rnorm(p)*sqrt(var.y0) + y0.mean
a.start <- exp(rnorm(p)*sqrt(var.log.a) + log.a.mean)
} else {
tmp.mat <- (cbind(log(a.start)-log.a.mean,y0.start-y0.mean))[ind.variance,]
Sigma.theta <- solve( rWishart(n = 1, df = p.var+df.wishart, Sigma = solve( invV.wishart + t(tmp.mat)%*%tmp.mat ))[,,1] )
}
#Initialize parameters#
a.vec <- a.start
y0.vec <- y0.start
Prob.obs <- matrix(NA, nrow=p, ncol=n)
#Initialize output#
out <- list()
if (save.every > 0) {
out$a.saved <- matrix(NA, nrow=p, ncol=floor(n.iter/save.every))
out$y0.saved <- matrix(NA, nrow=p, ncol=floor(n.iter/save.every))
out$Var.saved <- matrix(NA, nrow=3, ncol=floor(n.iter/save.every))
}
out$Post.Exp <- matrix(0, nrow=p, ncol=2)
Post.Exp2 <- lapply(X = 1:p, function(g){matrix(0,nrow=2,ncol=2)})
out$Post.Exp.W <- matrix(0, nrow=p, ncol=n)
out$Post.Exp.Pi <- matrix(0, nrow=p, ncol=n)
Post.Exp.W2 <- matrix(0, nrow=p, ncol=n)
out$Post.exp.Var <- matrix(0, nrow=2, ncol=2)
Post.exp.Var2 <- matrix(0, nrow=3, ncol=3)
for (i in 1:n.iter) {
cond.var.y0 <- Sigma.theta[2,2] - Sigma.theta[1,2]^2/Sigma.theta[1,1]
cond.var.log.a <- Sigma.theta[1,1] - Sigma.theta[1,2]^2/Sigma.theta[2,2]
for (g in 1:p) {
a.g <- a.vec[g]; phi.g <- log(a.g)
y0.g <- y0.vec[g]
U.g <- Get.U(C = cbind(C), K.ind = K.ind[g,])
y.g <- Y[g,]
ind.obs.g <- !is.na(y.g)
min.y.g <- min(y.g[ind.obs.g])
#Get Psi, Psi.bar, Sigma and svd.Sigma
if (is.na(Prob.obs[g,1])) {
Prob.obs[g,] <- rep(1, n); Prob.obs[g,ind.obs.g] <- pt.gen(x=a.g*(y.g[ind.obs.g]-y0.g), df = t.df, p.min.1 = p.min.1, p.min.2 = p.min.2)
}
Psi <- U.g * (1 - as.numeric(ind.obs.g)/Prob.obs[g,])
Psi.bar <- colMeans(Psi)
Sigma <- Calc.EmpSigma(Psi = Psi, ind.use = (Prob.obs[g,] >= min.prob))
svd.Sigma <- svd(Sigma)
#y0#
y0.prop.g <- MH.y0(a = a.g, y0 = y0.g, t.df = t.df, p.min.1 = p.min.1, p.min.2 = p.min.2, met.sd = prop.y0.sd, min.prob = min.prob, min.y = min.y.g)
ratio <- 0
if (min.prob > 0) {
tmp.quant <- min.y.g - qt(p=min.prob,df=t.df)/a.g
ratio <- -pnorm(q = tmp.quant, mean = y0.prop.g, sd = prop.y0.sd, log.p = T) - (-pnorm(q = tmp.quant, mean = y0.g, sd = prop.y0.sd, log.p = T))
}
prob.obs.prop <- rep(1, n); prob.obs.prop[ind.obs.g] <- pt.gen(x=a.g*(y.g[ind.obs.g]-y0.prop.g), df = t.df, p.min.1 = p.min.1, p.min.2 = p.min.2)
Psi.prop <- U.g * (1 - as.numeric(ind.obs.g)/prob.obs.prop)
Psi.prop.bar <- colMeans(Psi.prop)
Sigma.prop <- Calc.EmpSigma(Psi = Psi.prop, ind.use = (prob.obs.prop >= min.prob))
svd.Sigma.prop <- svd(Sigma.prop)
cond.mean.y0.g <- y0.mean + Sigma.theta[1,2]*(phi.g - log.a.mean)/Sigma.theta[1,1]
log.post.diff <- ( -n/2*sum( as.vector(t(svd.Sigma.prop$u)%*%Psi.prop.bar)^2/svd.Sigma.prop$d ) - 1/2/cond.var.y0*(cond.mean.y0.g-y0.prop.g)^2 ) - ( -n/2*sum( as.vector(t(svd.Sigma$u)%*%Psi.bar)^2/svd.Sigma$d ) - 1/2/cond.var.y0*(cond.mean.y0.g-y0.g)^2 )
if (include.norm) {log.post.diff <- log.post.diff - 1/2*sum(log(svd.Sigma.prop$d)) + 1/2*sum(log(svd.Sigma$d))}
if (log.post.diff + ratio > log(runif(1))) { #Accept move
y0.vec[g] <- y0.prop.g
y0.g <- y0.prop.g
Prob.obs[g,] <- prob.obs.prop
Psi <- Psi.prop
Psi.bar <- Psi.prop.bar
Sigma <- Sigma.prop
svd.Sigma <- svd.Sigma.prop
}
#a#
a.prop.g <- MH.a(a = a.g, y0 = y0.g, t.df = t.df, p.min.1 = p.min.1, p.min.2 = p.min.2, met.sd = prop.y0.sd, min.prob = min.prob, min.y = min.y.g)
phi.prop.g <- log(a.prop.g)
ratio <- 0
if (min.prob > 0 && min.y.g < y0.g && min.prob < 1/2) {
tmp.quant <- log(qt(p=min.prob,df=t.df)/(min.y.g-y0.g))
ratio <- -pnorm(q = tmp.quant, mean = phi.prop.g, sd = prop.a.sd, log.p = T) - (-pnorm(q = tmp.quant, mean = phi.g, sd = prop.a.sd, log.p = T))
}
prob.obs.prop <- rep(1, n); prob.obs.prop[ind.obs.g] <- pt.gen(x=a.prop.g*(y.g[ind.obs.g]-y0.g), df = t.df, p.min.1 = p.min.1, p.min.2 = p.min.2)
Psi.prop <- U.g * (1 - as.numeric(ind.obs.g)/prob.obs.prop)
Psi.prop.bar <- colMeans(Psi.prop)
Sigma.prop <- Calc.EmpSigma(Psi = Psi.prop, ind.use = (prob.obs.prop >= min.prob))
svd.Sigma.prop <- svd(Sigma.prop)
cond.mean.log.a.g <- log.a.mean + Sigma.theta[1,2]*(y0.g - y0.mean)/Sigma.theta[2,2]
log.post.diff <- ( -n/2*sum( as.vector(t(svd.Sigma.prop$u)%*%Psi.prop.bar)^2/svd.Sigma.prop$d ) - 1/2/cond.var.log.a*(cond.mean.log.a.g-phi.prop.g)^2 ) - ( -n/2*sum( as.vector(t(svd.Sigma$u)%*%Psi.bar)^2/svd.Sigma$d ) - 1/2/cond.var.log.a*(cond.mean.log.a.g-phi.g)^2 )
if (include.norm) {log.post.diff <- log.post.diff - 1/2*sum(log(svd.Sigma.prop$d)) + 1/2*sum(log(svd.Sigma$d))}
if (log.post.diff + ratio > log(runif(1))) { #Accept move
a.vec[g] <- a.prop.g
Prob.obs[g,] <- prob.obs.prop
}
#Update estimators#
if (i > n.burn) {
out$Post.Exp[g,] <- out$Post.Exp[g,] + 1/(n.iter-n.burn)*c(a.vec[g], y0.vec[g])
Post.Exp2[[g]] <- Post.Exp2[[g]] + 1/(n.iter-n.burn)*cbind(c(a.vec[g], y0.vec[g]))%*%rbind(c(a.vec[g], y0.vec[g]))
out$Post.Exp.W[g,] <- out$Post.Exp.W[g,] + 1/Prob.obs[g,]/(n.iter-n.burn)
out$Post.Exp.Pi[g,] <- out$Post.Exp.Pi[g,] + Prob.obs[g,]/(n.iter-n.burn)
Post.Exp.W2[g,] <- Post.Exp.W2[g,] + 1/Prob.obs[g,]^2/(n.iter-n.burn)
}
}
#Update Sigma.theta#
tmp.mat <- (cbind(log(a.start)-log.a.mean,y0.start-y0.mean))[ind.variance,]
Sigma.theta <- solve( rWishart(n = 1, df = p.var+df.wishart, Sigma = solve( invV.wishart + t(tmp.mat)%*%tmp.mat ))[,,1] )
if (i > n.burn) {
out$Post.exp.Var <- out$Post.exp.Var + 1/(n.iter-n.burn)*Sigma.theta
Post.exp.Var2 <- Post.exp.Var2 + 1/(n.iter-n.burn)*cbind(c(Sigma.theta[1,1], Sigma.theta[2,2], Sigma.theta[1,2]))%*%rbind(c(Sigma.theta[1,1], Sigma.theta[2,2], Sigma.theta[1,2]))
}
if (save.every > 0) {
if (floor(i/save.every) == i/save.every && floor(i/save.every) <= ncol(out$a.saved)) {
out$a.saved[,floor(i/save.every)] <- a.vec
out$y0.saved[,floor(i/save.every)] <- y0.vec
out$Var.saved[,floor(i/save.every)] <- c(Sigma.theta[1,1], Sigma.theta[2,2], Sigma.theta[1,2])
}
}
}
out$Post.Var <- lapply(X = 1:p, function(g){Post.Exp2[[g]] - cbind(out$Post.Exp[g,])%*%rbind(out$Post.Exp[g,])})
out$Post.Var.W <- Post.Exp.W2 - out$Post.Exp.W^2
out$Post.Var.Var <- Post.exp.Var2 - cbind(c(out$Post.exp.Var[1,1],out$Post.exp.Var[2,2],out$Post.exp.Var[1,2]))%*%rbind(c(out$Post.exp.Var[1,1],out$Post.exp.Var[2,2],out$Post.exp.Var[1,2]))
return(out)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.