# All code in this file via Ted Westling. Minor edits were made for package checking compatability.
# Y: n x 1 numeric outcome vector
# A: n x 1 numeric exposure vector
# W: n x p data.frame of confounders
# g.hats: n x 1 numeric vector of estimated G(da | w) / F(da) values (can be obtained using con.mixed.dens.SL)
# mu.hat: function taking arguments a, w, and returning estimated outcome regression value.
# p: numeric vector of powers p to use for the test, i.e. p=c(1,2,Inf)
# alpha: testing level
# n.sim: number of simulations to use for limit Gaussian process estimation
# return.Omega: whether to return the estimated primitive function and confidence interval/band
# cv.folds: if k-fold cross-fitting was used for g.hat and mu.hat, then cv.folds should be a length-k list of indices in each fold
# @importFrom sets interval_contains_element interval interval_complement
causal.null.test <- function(Y, A, W, g.hats, mu.hat, p=2, alpha = .05, n.sim = 1e4, return.Omega = FALSE, cv.folds = NULL) {
# library(sets)
# library(mvtnorm)
n <- length(Y)
a.vals <- sort(unique(A))
if(is.null(cv.folds)) {
ord <- order(A)
A <- A[ord]
Y <- Y[ord]
W <- W[ord,]
g.hats <- g.hats[ord]
a.ecdf <- stats::ecdf(A)
a.weights <- sapply(a.vals, function(a0) mean(A == a0))
A.a.val <- sapply(A, function(a0) which(a.vals == a0))
u.vals <- a.ecdf(a.vals)
mu.hats.a.vals <- sapply(a.vals, function(a0) mu.hat(a0, W)) #rows index W, columns index a.vals
mu.hats <- mu.hats.a.vals[,A.a.val]
#g.hats <- c(g.hat(A, W))
theta.a.vals <- colMeans(mu.hats.a.vals)
theta.A <- theta.a.vals[A.a.val]
mu.hats.data <- diag(mu.hats)
partial.mu.means <- t(apply(mu.hats, 1, cumsum)) / n
gamma.hat <- mean(mu.hats)
#gamma.hat <- mean(Y)#mean(diag(mu.hats))#
Omega.a.vals <- sapply(a.vals, function(a0) mean(as.numeric(A <= a0) * theta.A)) - gamma.hat * u.vals
IF.vals <- sapply(a.vals, function(a0) {
#mumean.vals <- apply(mu.hats, 1, function(row) mean(as.numeric(A <= a0) * row))
mumean.vals <- partial.mu.means[,max(which(A <= a0))]
#as.numeric(A <= a0) * ((Y - mu.hats.data) / g.hats + theta.A - gamma.hat) + mumean.vals - Y * a.ecdf(a0) - (mean(as.numeric(A <= a0) * theta.A) - gamma.hat * a.ecdf(a0))
(as.numeric(A <= a0) - a.ecdf(a0)) * ((Y - mu.hats.data) / g.hats + theta.A - gamma.hat) + mumean.vals - partial.mu.means[,n] * a.ecdf(a0) - 2 * Omega.a.vals[which(a.vals == a0)]
})
Omega.hat <- colMeans(IF.vals) + Omega.a.vals
# plot(a.vals, Omega.hat, type='l', ylim=c(-.2, .5))
# lines(a.vals, Omega.a.vals, col='blue')
# lines(a0.vals, Omega0.vals, col='red')
Sigma.hat <- sapply(1:length(a.vals), function(s) sapply(1:length(a.vals), function(t) {
mean(IF.vals[,s] * IF.vals[,t])
}))
#paths <- matrix(rnorm(n * n.sim), ncol=n) %*% IF.vals
# sds <- sqrt(colMeans(IF.vals.cent^2))
# lines(a.vals, Omega.hat + quantile(apply(abs(paths), 1, max), .975) / sqrt(n) , col='red')
# lines(a.vals, Omega.hat - quantile(apply(abs(paths), 1, max), .975) / sqrt(n) , col='red')
} else {
n.folds <- length(cv.folds)
fold.Omega.hats <- matrix(NA, nrow = n.folds, ncol = length(a.vals))
IF.vals <- vector(length=n.folds, mode='list')
for(j in 1:n.folds) {
Nv <- length(cv.folds[[j]])
A.test <- A[cv.folds[[j]]]
Y.test <- Y[cv.folds[[j]]]
W.test <- W[cv.folds[[j]],]
ord <- order(A.test)
A.test <- A.test[ord]
Y.test <- Y.test[ord]
W.test <- W.test[ord,]
g.hats.test <- g.hats[[j]][ord]
a.ecdf <- stats::ecdf(A.test)
a.weights <- sapply(a.vals, function(a0) mean(A.test == a0))
A.a.val <- sapply(A.test, function(a0) which(a.vals == a0))
u.vals <- a.ecdf(a.vals)
mu.hats.a.vals <- sapply(a.vals, function(a0) mu.hat[[j]](a0, W.test)) #rows index W, columns index a.vals
mu.hats <- mu.hats.a.vals[,A.a.val]
#g.hats <- c(g.hat(A, W))
theta.a.vals <- colMeans(mu.hats.a.vals)
theta.A <- theta.a.vals[A.a.val]
mu.hats.data <- diag(mu.hats)
partial.mu.means <- t(apply(mu.hats, 1, cumsum)) / Nv
gamma.hat <- mean(mu.hats)
#gamma.hat <- mean(Y)#mean(diag(mu.hats))#
Omega.a.vals <- sapply(a.vals, function(a0) mean(as.numeric(A.test <= a0) * theta.A)) - gamma.hat * u.vals
IF.vals[[j]] <- sapply(a.vals, function(a0) {
#mumean.vals <- apply(mu.hats, 1, function(row) mean(as.numeric(A <= a0) * row))
mumean.vals <- partial.mu.means[,max(which(A.test <= a0))]
#as.numeric(A <= a0) * ((Y - mu.hats.data) / g.hats + theta.A - gamma.hat) + mumean.vals - Y * a.ecdf(a0) - (mean(as.numeric(A <= a0) * theta.A) - gamma.hat * a.ecdf(a0))
(as.numeric(A.test <= a0) - a.ecdf(a0)) * ((Y.test - mu.hats.data) / g.hats.test + theta.A - gamma.hat) + mumean.vals - partial.mu.means[,ncol(partial.mu.means)] * a.ecdf(a0) - 2 * Omega.a.vals[which(a.vals == a0)]
})
fold.Omega.hats[j,] <- colMeans(IF.vals[[j]]) + Omega.a.vals
}
Omega.hat <- colMeans(fold.Omega.hats)
Sigma.hat <- sapply(1:length(a.vals), function(s) sapply(1:length(a.vals), function(t) {
mean(unlist(lapply(IF.vals, function(IF) mean(IF[,s] * IF[,t]))))
}))
#paths <- matrix(rnorm(n * n.sim), ncol=n) %*% IF.vals
}
paths <- mvtnorm::rmvnorm(n.sim, sigma=Sigma.hat)
a.weights <- sapply(a.vals, function(a) mean(A == a))
ret <- t(sapply(p, function(pp) {
stat <- ifelse(pp < Inf, (sum(abs(Omega.hat )^pp * a.weights))^{1/pp}, max(abs(Omega.hat)))
if(pp < Inf) {
stats <- (apply(abs(paths)^pp, 1, function(row) sum(row * a.weights)))^{1/pp}
} else {
stats <- apply(abs(paths), 1, max)
}
p.val <- mean(stats / sqrt(n) > stat)
q <- quantile(stats, (1 - alpha / 2))
ci.ll <- max(stat - q / sqrt(n), 0)
ci.ul <- stat + q / sqrt(n)
res <- c(stat, p.val, ci.ll, ci.ul)
res
}))
ret.df <- data.frame(p = p, obs.stat = ret[,1], p.val = ret[,2])
if(!return.Omega) return(ret.df)
if(return.Omega) {
ret.df$ci.ll <- ret[,3]
ret.df$ci.ul <- ret[,4]
ret.list <- list(test = ret.df, Omega.hat = Omega.hat, IF.vals = IF.vals, paths = paths)
return(ret.list)
}
}
find.bin <- function(x, bins) {
mat <- t(sapply(x-1e-10, function(x0) {
unlist(lapply(bins, function(bin) {
sets::interval_contains_element(bin, x0)
}))
}))
if(any(rowSums(mat) > 1)) stop("Overlapping bins")
if(any(rowSums(mat) == 0)) stop("Element outside all bins")
apply(mat, 1, function(row) which(row))
# ret <- rep(NA, length(x))
# if(any(bins$mass.pt)) {
# for(row in which(bins$mass.pt)) {
# ret[ x == bins$lower[row] ] <- bins$bin[row]
# }
# }
# breaks <- sort(c(bins$lower[!bins$mass.pt], max(bins$upper[!bins$mass.pt])))
# ret[is.na(ret)] <- findInterval(x[is.na(ret)], vec = breaks, all.inside = TRUE, left.open = TRUE)
# return(ret)
}
# A: n x 1 numeric exposure vector
# W: n x p data.frame of confounders
# n.bins: numeric vector of number of bins to use, i.e. 2:5 or c(2,4,6,8,10)
# SL.library: super learner library to use for each bin-specific estimate
# verbose: whether to report progress
# n.folds: number of folds for cross-validation across bins
#' @import Rsolnp
con.mixed.dens.SL <- function(A, W, n.bins, SL.library, verbose=FALSE, n.folds = 10) {
n <- nrow(W)
sorted <- rep(1:n.folds, length.out = n)
folds <- sample(sorted, n, replace=FALSE)
valid.rows <- lapply(1:n.folds, function(v) which(folds == v))
#library(Rsolnp)
fits <- NULL
for(b in n.bins) {
if(verbose) cat("\nEstimating models with", b, "bins... ")
fits[[paste0('dens.fit.', b, 'bins')]] <- con.mixed.dens.one.bin(A, W, n.bins = b, SL.library = SL.library, verbose = verbose, valid.rows = valid.rows, n.folds = n.folds)
}
algs.per.bin <- ncol(fits[[1]]$cv.library.densities)
n.algs <- length(n.bins) * algs.per.bin
cv.library.densities <- library.densities <- matrix(NA, nrow=n, ncol=n.algs)
library.names <- NULL
start.col <- 1
for(b in n.bins) {
end.col <- start.col + algs.per.bin - 1
cv.library.densities[,start.col:end.col] <- fits[[paste0('dens.fit.', b, 'bins')]]$cv.library.densities
library.densities[,start.col:end.col] <- fits[[paste0('dens.fit.', b, 'bins')]]$library.densities
library.names <- c(library.names, fits[[paste0('dens.fit.', b, 'bins')]]$alg.names)
start.col <- end.col + 1
}
if(verbose) cat("\nOptimizing model weights...\n")
# Remove algs with errors in cv predictions
errors.in.library <- apply(cv.library.densities, 2, function(col) any(is.na(col)))
if(any(errors.in.library)) warning(paste0("Errors in the following candidate algorithms: ", library.names[which(errors.in.library)]))
n.include <- sum(!errors.in.library)
# Do SL log-likelihood optimization
cv_risk <- function(beta) -mean(log(cv.library.densities[,!errors.in.library] %*% beta))
utils::capture.output(solnp_solution <- solnp(rep(1/n.include, n.include), cv_risk, eqfun=sum, eqB=1, ineqfun=function(beta) beta, ineqLB=rep(0,n.include), ineqUB=rep(1, n.include)))
coef <- rep(0, n.algs)
coef[!errors.in.library] <- solnp_solution$pars
if(verbose) {
cat("Top five learners by weight: \n")
for(j in 1:5) {
cat(library.names[order(coef, decreasing = TRUE)[j]], " (weight ", sort(coef, decreasing = TRUE)[j], ")\n", sep='')
}
}
SL.density <- c(library.densities[,!errors.in.library] %*% solnp_solution$pars)
return(list(n.bins = n.bins, fits = fits, cv.library.densities = cv.library.densities, library.densities = library.densities, SL.densities = SL.density, coef = coef, library.names = library.names, a.ecdf = stats::ecdf(A)))
}
#' @import Rsolnp
#' @import SuperLearner
# @import sets
con.mixed.dens.one.bin <- function(A, W, n.bins, SL.library, verbose=FALSE, valid.rows=NULL, n.folds=10) {
a.ecdf <- stats::ecdf(A)
U <- a.ecdf(A)
n <- nrow(W)
W <- as.data.frame(W)
U <- as.numeric(U)
#library(Rsolnp)
#library(SuperLearner)
#library(sets)
tab <- table(U)
un.U <- as.numeric(names(tab))
un.U.frac <- as.numeric(tab) / length(U)
if(n.bins <= 1) stop("Number of bins must be > 1")
if(length(un.U) < n.bins) stop("Number of bins must not be larger than number of unique values of U.")
if(length(un.U) == n.bins) {
mass.pts <- un.U
bins <- data.frame(bin = 1:n.bins, lower = un.U, upper = un.U, bin.length = 0, mass.pt = TRUE)
}
if(length(un.U) > n.bins) {
if(any(un.U.frac >= 1/n.bins)) {
mass.pts <- un.U[un.U.frac >= 1/n.bins]
n.mass.pts <- length(mass.pts)
mass.pt.lowers <- sapply(mass.pts, function(x) max(c(U[x - U > 1/(10*n)], 0)))
mass.intervals <- lapply(1:n.mass.pts, function(j) {
sets::interval(mass.pt.lowers[j], mass.pts[j], bounds="(]")
})
cont.intervals <- data.frame(lower=c(0,mass.pts), upper=c(mass.pt.lowers, 1))
cont.intervals$length <- cont.intervals$upper - cont.intervals$lower
cont.intervals <- subset(cont.intervals, length > 0)
} else {
mass.pts <- NULL
n.mass.pts <- 0
mass.intervals <- NULL
cont.intervals <- data.frame(lower=0, upper=1, length=1)
}
n.cont.bins <- n.bins - n.mass.pts
delta <- sum(cont.intervals$length) / n.cont.bins
delta <- round(delta, digits=ceiling(log10(n)) + 2)
cont.bin.endpts <- matrix(NA, nrow=n.cont.bins, ncol=2)
for(j in 1:n.cont.bins) {
if(j == 1) start <- cont.intervals$lower[1]
else start <- end
start.interval <- max(which(cont.intervals$lower <= start & start <= cont.intervals$upper))
if(start == cont.intervals$upper[start.interval]) {
start.interval <- start.interval + 1
start <- cont.intervals$lower[start.interval]
}
end <- start + delta
end.interval <- start.interval
if(!(all.equal(end, cont.intervals$upper[end.interval]) == TRUE) && end > cont.intervals$upper[end.interval]) {
length.used <- cont.intervals$upper[end.interval] - start
length.left <- delta - length.used
end.interval <- end.interval + 1
end <- cont.intervals$lower[end.interval] + length.left
}
while(!(all.equal(end, cont.intervals$upper[end.interval]) == TRUE) && end > cont.intervals$upper[end.interval]) {
length.used <- length.used + cont.intervals$upper[end.interval] - cont.intervals$lower[end.interval]
length.left <- delta - length.used
end.interval <- end.interval + 1
end <- cont.intervals$lower[end.interval] + length.left
}
end <- round(end, digits=ceiling(log10(n)) + 3)
if(j == n.cont.bins) end <- cont.intervals$upper[nrow(cont.intervals)]
cont.bin.endpts[j,] <- c(start, end)
}
cont.intervals <- lapply(1:n.cont.bins, function(j) {
if(j == 1) int <- sets::interval(cont.bin.endpts[j, 1], cont.bin.endpts[j, 2], bounds="[]")
else int <- sets::interval(cont.bin.endpts[j, 1], cont.bin.endpts[j, 2], bounds="(]")
if(n.mass.pts > 0) {
for(k in 1:n.mass.pts) {
int <- sets::interval_complement(mass.intervals[[k]], int)
}
}
return(int)
})
bins <- c(mass.intervals, cont.intervals)
bin.sizes <- unlist(lapply(bins, interval_measure))
# ycuts <- seq(0,1,by=1/n.cont.bins)
# bin.cuts <- as.numeric(quantile(U[!(U %in% mass.pts)], ycuts, type=1))
# bins <- data.frame(bin = 1:n.cont.bins , lower = bin.cuts[1:n.cont.bins], upper = bin.cuts[-1])
# bins$bin.length <- bins$upper - bins$lower
# bins$mass.pt <- FALSE
# if(any(bins$bin.length == 0)) {
# bins$mass.pt[bins$bin.length == 0] <- TRUE
# }
# if(n.mass.pts > 0) {
# mass.pt.bins <- data.frame(bin=(n.cont.bins + 1):n.bins, lower = mass.pts, upper = mass.pts, bin.length = 0, mass.pt = TRUE)
# bins <- rbind(bins, mass.pt.bins)
# }
}
# bins$weight <- ifelse(bins$mass.pt, 1 / sapply(bins$lower, function(l) mean(U == l)), 1 / bins$bin.length)
#
disc.U <- find.bin(U, bins)
#disc.U.num <- as.numeric(disc.U)
#labs <- levels(disc.U)
bin.fits <- NULL
bin.probs <- matrix(NA, nrow=n, ncol=n.bins)
for(bin in 1:n.bins) {
if(verbose) cat("bin", bin, "... ")
utils::capture.output(bin.fit <- try(SuperLearner(Y=as.numeric(disc.U==bin), X=W, family='binomial', SL.library = SL.library, method='method.NNloglik', cvControl = list(V=n.folds, validRows=valid.rows)), silent=TRUE))
if(class(bin.fit) == "try-error") {
utils::capture.output(bin.fit <- try(SuperLearner(Y=as.numeric(disc.U==bin), X=W, family='binomial', SL.library = SL.library, method='method.NNLS', cvControl = list(V=n.folds, validRows=valid.rows)), silent=TRUE))
}
if(class(bin.fit) == "try-error") {
utils::capture.output(bin.fit <- try(SuperLearner(Y=as.numeric(disc.U==bin), X=W, family='binomial', SL.library = SL.library, method='method.NNLS2', cvControl = list(V=n.folds, validRows=valid.rows)), silent=TRUE))
}
if(class(bin.fit) != "try-error") {
bin.fits[[paste0("bin", bin, ".SL")]] <- bin.fit
bin.probs[,bin] <- bin.fit$SL.predict
} else {
bin.mean <- mean(as.numeric(disc.U==bin))
if(class(SL.library) == "character") n.algs <- length(SL.library)
else n.algs <- sum(unlist(lapply(SL.library, function(sl) length(sl) - 1)))
bin.fits[[paste0("bin", bin, ".SL")]] <- list(Z = matrix(bin.mean, nrow=n,ncol=n.algs), library.predict = matrix(bin.mean, nrow=n,ncol=n.algs))
bin.probs[,bin] <- bin.mean
}
}
SL.bin.probs <- make.doubly.stochastic(bin.probs, row.sums = rep(1, n), col.sums = bin.sizes * n)#bin.probs / rowSums(bin.probs)
SL.densities <- SL.bin.probs[cbind(1:n, disc.U)] / bin.sizes[disc.U]
n.alg <- ncol(bin.fits[["bin1.SL"]]$Z)
cv.library.densities <- library.densities <- matrix(NA, nrow=n, ncol=n.alg)
for (j in 1:n.alg) {
cv.bin.probs <- library.bin.probs <- matrix(NA, nrow=n, ncol=n.bins)
for (bin in 1:n.bins) {
cv.bin.probs[, bin] <- bin.fits[[paste0("bin", bin, ".SL")]]$Z[,j]
library.bin.probs[, bin] <- bin.fits[[paste0("bin", bin, ".SL")]]$library.predict[,j]
}
if(any(is.na(cv.bin.probs)) | any(colSums(cv.bin.probs) == 0) | any(rowSums(cv.bin.probs) == 0)) {
cv.library.densities[,j] <- rep(NA, n)
} else {
cv.bin.probs <- make.doubly.stochastic(cv.bin.probs, row.sums = rep(1, n), col.sums = bin.sizes * n)
cv.library.densities[,j] <- cv.bin.probs[cbind(1:n, disc.U)] / bin.sizes[disc.U]
}
if(any(is.na(library.bin.probs)) | any(colSums(library.bin.probs) == 0) | any(rowSums(library.bin.probs) == 0)) {
library.densities[,j] <- rep(NA, n)
} else {
library.bin.probs <- make.doubly.stochastic(library.bin.probs, row.sums = rep(1, n), col.sums = bin.sizes * n)
library.densities[,j] <- library.bin.probs[cbind(1:n, disc.U)] / bin.sizes[disc.U]
}
}
alg.names <- paste0(bin.fits[["bin1.SL"]]$libraryNames, "_", n.bins, "bins")
return(list(bins = bins, bin.fits = bin.fits, a.ecdf = a.ecdf, SL.bin.probs = SL.bin.probs, SL.densities = SL.densities, cv.library.densities = cv.library.densities, library.densities = library.densities, alg.names = alg.names))
}
make.doubly.stochastic <- function(mat, row.sums, col.sums, tol = .001) {
ret <- mat
while(sum(abs(rowSums(ret) - row.sums)) > tol | sum(abs(colSums(ret) - col.sums)) > tol) {
ret <- ret / (rowSums(ret) / row.sums)
ret <- t( t(ret) / (colSums(ret) / col.sums))
}
return(ret)
}
predict.con.mixed.dens.SL <- function(fit, new.A, new.W, threshold = .001) {
new.W <- as.data.frame(new.W)
new.U <- fit$a.ecdf(new.A)
trunc.coef <- fit$coef
trunc.coef[trunc.coef < threshold] <- 0
trunc.coef <- trunc.coef / sum(trunc.coef)
nonzero <- which(trunc.coef > 0)
lib.name.splits <- strsplit(fit$library.names, "_")
lib.name.nbins <- unlist(lapply(lib.name.splits, function(l) as.numeric(strsplit(l[3], "bins")[[1]])))
lib.name.alg <- unlist(lapply(lib.name.splits, function(l) paste0(l[1:2], collapse="_")))
bins.to.fit <- unique(lib.name.nbins[nonzero])
pred.densities <- matrix(NA, nrow=length(new.A), ncol=length(fit$library.names))
for(bin in bins.to.fit) {
ind <- which(fit$n.bins == bin)
new.bins <- find.bin(new.U, bins = fit$fits[[ind]]$bins)
bin.sizes <- unlist(lapply(fit$fits[[ind]]$bins, interval_measure))
pred.probs <- matrix(NA, nrow = length(new.U), ncol = length(unique(lib.name.alg)))
for(k in 1:length(fit$fits[[ind]]$bin.fits)) {
if(any(new.bins == k)) {
pred.probs[new.bins == k,] <- predict.SuperLearner(fit$fits[[ind]]$bin.fits[[k]], newdata = new.W[new.bins == k,])$library.predict
}
}
pred.densities[,which(lib.name.nbins == bin)] <- pred.probs / bin.sizes[new.bins]
}
c(pred.densities[,nonzero] %*% trunc.coef[nonzero])
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.