enrich_genesets: enrich_genesets

Description Usage Arguments Value Examples

View source: R/generics.R

Description

Runs geneset tests and store in BOWER class.

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
## S3 method for class 'list'
enrich_genesets(
  list,
  bower,
  core = FALSE,
  gene_symbol = "X1",
  logfoldchanges = "logfoldchanges",
  pvals = "pvals",
  remove_mito_ribo = TRUE,
  minSize = 0,
  maxSize = 1000,
  ...
)

## S3 method for class 'Seurat'
enrich_genesets(
  sce,
  bower,
  groupby = NULL,
  core = FALSE,
  standardize = TRUE,
  mode = c("AUCell", "Seurat", "scanpy"),
  sce_assay = "logcounts",
  seurat_assay = "RNA",
  ncpus = NULL,
  aucMaxRank_pct = 5,
  ...
)

## S3 method for class 'SingleCellExperiment'
enrich_genesets(
  sce,
  bower,
  groupby = NULL,
  core = FALSE,
  standardize = TRUE,
  mode = c("AUCell", "Seurat", "scanpy"),
  sce_assay = "logcounts",
  seurat_assay = "RNA",
  ncpus = NULL,
  aucMaxRank_pct = 5,
  ...
)

Arguments

list

list containing differentially expressed gene testing results in a data frame.

bower

Processed BOWER object.

core

boolean. Whether or not to use the coregenes of genesets slot. Default is FALSE (use genesets).

gene_symbol

column name for gene_symbol for gsea.

logfoldchanges

column name for logfoldchanges for gsea.

pvals

column name for pvals for gsea.

remove_mito_ribo

boolean. whether or not to remove mitochondial and ribosomal genes from consideration for gsea. Default is TRUE.

minSize

minimum geneset size for gsea. Default is 0.

maxSize

maximum geneset size for gsea. Default is 1000.

...

passed to fgsea::fgsea, AUCell::AUCell_buildRankings or Seurat::AddModuleScore

sce

a single cell object in the format of a Seurat object or SingleCellExperiment object.

groupby

Column name in the meta.data/colData of the single cell objects specifying the group to average the enrichment score. If not specified, not cluster average will be calculated.

standardize

whether or not to standardize mean enrichment values to 0 to 1. Only used if groupby is not NULL.

mode

choice of enrichment test to perform.

sce_assay

name of assay in SingleCellExperiment object.

seurat_assay

name of assay in Seurat object.

ncpus

number of cores used for parallelizing geneset testing.

aucMaxRank_pct

percentage to use for aucMaxRank in AUCell::AUCell_calcAUC.

nperm

number of permuation iterations for gsea. Default is 10000.

Value

Returns a dataframe of average gene set scores.

Examples

1
2
3
4
5
6
7
8
9
library(ktplots)
data(kidneyimmune)
gmt_file <- system.file("extdata", "h.all.v7.4.symbols.gmt", package = "bowerbird")
bwr <- bower(gmt_file)
bwr <- snn_graph(bwr)
bwr <- find_clusters(bwr)
bwr <- summarize_clusters(bwr, ncpus = 1)
bwr <- enrich_genesets(kidneyimmune, bwr, groupby = 'celltype', ncpus = 1)
bwr

clatworthylab/bowerbird documentation built on Dec. 19, 2021, 5:15 p.m.