# test PCA
test_that('PCA gives expected sum of sqaures for Iris data',{
# DatasetExperiment
D=iris_DatasetExperiment()
# PCA model
M=PCA()
# train the model
M=model_train(M,D)
# apply the model
M=model_predict(M,D)
# check the sum of squares
expect_equal(M$ssx,9539.29)
# using 1 component
M$number_components=1
# train the model
M=model_train(M,D)
# apply the model
M=model_predict(M,D)
# check the sum of squares
expect_equal(M$ssx,9539.29)
})
test_that('PCA scores chart returns ggplot object',{
# DatasetExperiment
D=iris_DatasetExperiment()
# PCA model
M=mean_centre()+PCA()
# train the model
M=model_train(M,D)
# apply the model
M=model_predict(M,D)
# chart
C=pca_scores_plot(factor_name='Species')
# plot
gg=chart_plot(C,M[2])
ggplot_build(gg)
expect_true(is(gg,'ggplot'))
# label all points
C=pca_scores_plot(factor_name='Species',points_to_label = 'all')
# plot
gg=chart_plot(C,M[2])
ggplot_build(gg)
expect_true(is(gg,'ggplot'))
# label outliers
C=pca_scores_plot(factor_name='Species',points_to_label = 'outliers')
# plot
gg=chart_plot(C,M[2])
ggplot_build(gg)
expect_true(is(gg,'ggplot'))
# continuous factor
M[2]$scores$sample_meta$Sample_No=1:length(D$sample_meta$Species)
C=pca_scores_plot(factor_name='Sample_No')
# plot
gg=chart_plot(C,M[2])
ggplot_build(gg)
expect_true(is(gg,'ggplot'))
# label filter
C=pca_scores_plot(factor_name='Species',label_filter='virginica',points_to_label='all')
# plot
gg=chart_plot(C,M[2])
ggplot_build(gg)
expect_true(is(gg,'ggplot'))
})
test_that('PCA biplot chart returns ggplot object',{
# DatasetExperiment
D=iris_DatasetExperiment()
# PCA model
M=mean_centre()+PCA()
# train the model
M=model_train(M,D)
# apply the model
M=model_predict(M,D)
# chart
C=pca_biplot(factor_name='Species',style='arrows')
# plot
gg=chart_plot(C,M[2])
ggplot_build(gg)
expect_true(is(gg,'ggplot'))
# different style
C=pca_biplot(factor_name='Species',style='points')
# plot
gg=chart_plot(C,M[2])
ggplot_build(gg)
expect_true(is(gg,'ggplot'))
# variable labels
C=pca_biplot(factor_name='Species',style='points',label_features = TRUE)
# plot
gg=chart_plot(C,M[2])
ggplot_build(gg)
expect_true(is(gg,'ggplot'))
})
test_that('PCA correlation chart returns ggplot object',{
# DatasetExperiment
D=iris_DatasetExperiment()
# PCA model
M=mean_centre()+PCA()
# train the model
M=model_train(M,D)
# apply the model
M=model_predict(M,D)
# chart
C=pca_correlation_plot()
# plot
gg=chart_plot(C,M[2])
ggplot_build(gg)
expect_true(is(gg,'ggplot'))
})
test_that('PCA scree chart returns ggplot object',{
# DatasetExperiment
D=iris_DatasetExperiment()
# PCA model
M=mean_centre()+PCA()
# train the model
M=model_train(M,D)
# apply the model
M=model_predict(M,D)
# chart
C=pca_scree_plot()
# plot
gg=chart_plot(C,M[2])
ggplot_build(gg)
expect_true(is(gg,'ggplot'))
})
test_that('PCA dstat chart returns ggplot object',{
# DatasetExperiment
D=iris_DatasetExperiment()
# PCA model
M=mean_centre()+PCA()
# train the model
M=model_train(M,D)
# apply the model
M=model_predict(M,D)
# chart
C=pca_dstat_plot()
# plot
gg=chart_plot(C,M[2])
ggplot_build(gg)
expect_true(is(gg,'ggplot'))
})
test_that('PCA loadings chart returns ggplot object',{
# DatasetExperiment
D=iris_DatasetExperiment()
# PCA model
M=mean_centre()+PCA()
# train the model
M=model_train(M,D)
# apply the model
M=model_predict(M,D)
# chart
C=pca_loadings_plot()
# plot
gg=chart_plot(C,M[2])
ggplot_build(gg)
expect_true(is(gg,'ggplot'))
# only one component
C=pca_loadings_plot(components=1)
# plot
gg=chart_plot(C,M[2])
ggplot_build(gg)
expect_true(is(gg,'ggplot'))
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.