knitr::opts_chunk$set( collapse = TRUE, comment = "#>" )
klippy::klippy(tooltip_message = 'Click to copy', tooltip_success = 'Done', position = c('bottom', 'right'))
scType is an automated cell type identification method using a panel of markers. Here we should you how to perform this on your IBRAP data and object.
library(IBRAP) library(tidyverse) obj <- readRDS("/Users/knight05/work/Results/scRNA-seq/IBRAP_tutorials/scType_tutorial/scType_tutorial.rds")
library(IBRAP) library(tidyverse) system('curl -LJO https://raw.githubusercontent.com/connorhknight/IBRAP/main/data/celseq2.rds') celseq2 <- readRDS('celseq2.rds') obj <- createIBRAPobject(counts = celseq2$counts, original.project = 'celseq2', meta.data = celseq2$metadata) obj <- perform.sct(object = obj) obj <- perform.pca(object = obj, assay = 'SCT') obj <- perform.nn(object = obj, assay = 'SCT', reduction = 'PCA', dims.use = list(20)) obj <- perform.graph.cluster(object = obj, assay = 'SCT', neighbours = 'PCA_NN') obj <- perform.umap(object = obj, assay = 'SCT', reduction = 'PCA', dims.use = list(20))
We next next need to gather gene sets:
There are a couple of ways to do this: (1) get the gene sets from the escape package or (2) define your own.
obj <- perform.sctype(object = obj, assay = 'SCT', tissue = 'Pancreas', clust.method = 'PCA_NN:LOUVAIN', column = 'res_0.8', slot = 'norm.scaled')
plot.reduced.dim(object = obj, reduction = 'PCA_UMAP', assay = 'SCT', clust.method = 'metadata', column = 'scType_SCT_norm.scaled')
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.