R/smmnonparametric.R

Defines functions plot.smmnonparametric logLik.smmnonparametric getKernel.smmnonparametric BIC.smmnonparametric AIC.smmnonparametric .logLik.smmnonparametric get.Kpar.smmnonparametric .get.Kpar.smmnonparametric get.f.smmnonparametric .get.f.smmnonparametric is.smmnonparametric smmnonparametric

Documented in is.smmnonparametric smmnonparametric

#' Non-parametric semi-Markov model specification
#' 
#' @description Creates a non-parametric model specification for a semi-Markov model.
#' 
#' @details This function creates a semi-Markov model object in the 
#' non-parametric case, taking into account the type of sojourn time and the 
#' censoring described in references. The non-parametric specification concerns 
#' sojourn time distributions defined by the user.
#' 
#' The difference between the Markov model and the semi-Markov model concerns 
#' the modeling of the sojourn time. With a Markov chain, the sojourn time 
#' distribution is modeled by a Geometric distribution (in discrete time). 
#' With a semi-Markov chain, the sojourn time can be any arbitrary distribution.
#' 
#' We define :
#'  \itemize{
#'    \item the semi-Markov kernel \eqn{q_{ij}(k) = P( J_{m+1} = j, T_{m+1} - T_{m} = k | J_{m} = i )};
#'    \item the transition matrix \eqn{(p_{trans}(i,j))_{i,j} \in states} of the embedded Markov chain \eqn{J = (J_m)_m}, \eqn{p_{trans}(i,j) = P( J_{m+1} = j | J_m = i )};
#'    \item the initial distribution \eqn{\mu_i = P(J_1 = i) = P(Z_1 = i)}, \eqn{i \in 1, 2, \dots, s};
#'    \item the conditional sojourn time distributions \eqn{(f_{ij}(k))_{i,j} \in states,\ k \in N ,\ f_{ij}(k) = P(T_{m+1} - T_m = k | J_m = i, J_{m+1} = j )}, 
#'      f is specified by the argument `distr` in the non-parametric case.
#'  }
#'  
#' In this package we can choose different types of sojourn time.
#' Four options are available for the sojourn times:
#' \itemize{
#'   \item depending on the present state and on the next state (\eqn{f_{ij}});
#'   \item depending only on the present state (\eqn{f_{i}});
#'   \item depending only on the next state (\eqn{f_{j}});
#'   \item depending neither on the current, nor on the next state (\eqn{f}).
#' }
#' 
#' Let define \eqn{kmax} the maximum length of the sojourn times.
#' If  `type.sojourn = "fij"`, `distr` is an array of dimension \eqn{(s, s, kmax)}.
#' If `type.sojourn = "fi"` or `"fj"`, `distr` must be a matrix of dimension \eqn{(s, kmax)}.
#' If `type.sojourn = "f"`, `distr` must be a vector of length \eqn{kmax}.
#' 
#' If the sequence is censored at the beginning and/or at the end, `cens.beg` 
#' must be equal to `TRUE` and/or `cens.end` must be equal to `TRUE`. 
#' All the sequences must be censored in the same way.
#' 
#' @param states Vector of state space of length \eqn{s}.
#' @param init Vector of initial distribution of length \eqn{s}.
#' @param ptrans Matrix of transition probabilities of the embedded Markov 
#'   chain \eqn{J=(J_m)_{m}} of dimension \eqn{(s, s)}.
#' @param type.sojourn Type of sojourn time (for more explanations, see Details).
#' @param distr
#'   \itemize{
#'     \item Array of dimension \eqn{(s, s, kmax)} if `type.sojourn = "fij"`;
#'     \item Matrix of dimension \eqn{(s, kmax)} if `type.sojourn = "fi"` or `"fj"`;
#'     \item Vector of length \eqn{kmax} if the `type.sojourn = "f"`.
#'   }
#'   \eqn{kmax} is the maximum length of the sojourn times.
#' @param cens.beg Optional. A logical value indicating whether or not 
#'   sequences are censored at the beginning.
#' @param cens.end Optional. A logical value indicating whether or not 
#'   sequences are censored at the end.
#' @return Returns an object of class `smm`, [smmnonparametric].
#' 
#' @seealso [simulate], [fitsmm], [smmparametric]
#' 
#' @references
#' V. S. Barbu, N. Limnios. (2008). Semi-Markov Chains and Hidden Semi-Markov 
#' Models Toward Applications - Their Use in Reliability and DNA Analysis. 
#' New York: Lecture Notes in Statistics, vol. 191, Springer.
#' 
#' @export
#' 
#' @examples 
#' states <- c("a", "c", "g", "t")
#' s <- length(states)
#' 
#' # Creation of the initial distribution
#' vect.init <- c(1 / 4, 1 / 4, 1 / 4, 1 / 4)
#' 
#' # Creation of the transition matrix
#' pij <- matrix(c(0, 0.2, 0.5, 0.3, 
#'                 0.2, 0, 0.3, 0.5, 
#'                 0.3, 0.5, 0, 0.2, 
#'                 0.4, 0.2, 0.4, 0), 
#'               ncol = s, byrow = TRUE)
#' 
#' # Creation of a matrix corresponding to the 
#' # conditional sojourn time distributions
#' kmax <- 6
#' nparam.matrix <- matrix(c(0.2, 0.1, 0.3, 0.2, 
#'                           0.2, 0, 0.4, 0.2, 
#'                           0.1, 0, 0.2, 0.1, 
#'                           0.5, 0.3, 0.15, 0.05, 
#'                           0, 0, 0.3, 0.2, 
#'                           0.1, 0.2, 0.2, 0), 
#'                         nrow = s, ncol = kmax, byrow = TRUE)
#' 
#' semimarkov <- smmnonparametric(states = states, init = vect.init, ptrans = pij, 
#'                                type.sojourn = "fj", distr = nparam.matrix)
#' 
#' semimarkov
#'
#' @testexamples
#' expect_true(all(semimarkov$init - vect.init == 0))
#' expect_true(all(semimarkov$ptrans - pij == 0))
#' expect_true(is.smm(semimarkov))
#' expect_false(is.smmparametric(semimarkov))
#' expect_true(is.smmnonparametric(semimarkov))
smmnonparametric <- function(states, init, ptrans, type.sojourn = c("fij", "fi", "fj", "f"), 
                             distr, cens.beg = FALSE, cens.end = FALSE) {
  
  #############################
  # Checking parameter states
  #############################
  
  s <- length(states)
  
  if (!(is.vector(states) & (length(unique(states)) == s))) {
    stop("The state space 'states' is not a vector of unique elements")
  }
  
  #############################
  # Checking parameter init
  #############################
  
  if (!(is.numeric(init) & !anyNA(init) & is.vector(init) & length(init) == s)) {
    stop("'init' is not a numeric vector of length s")
  }
  
  if (!(all(init >= 0) & all(init <= 1))) {
    stop("Probabilities in 'init' must be between [0, 1]")
  }
  
  if (!((sum(init) >= 1 - sqrt(.Machine$double.eps)) & (sum(init) <= 1 + sqrt(.Machine$double.eps)))) {
    stop("The sum of 'init' is not equal to one")
  }
  
  #############################
  # Checking parameter ptrans
  #############################
  
  if (!(is.numeric(ptrans) & !anyNA(ptrans) & is.matrix(ptrans))) {
    stop("'ptrans' is not a matrix with numeric values")
  }
  
  if (!((dim(ptrans)[1] == s) & (dim(ptrans)[2] == s))) {
    stop("The dimension of the matrix 'ptrans' must be equal to (s, s)")
  }
  
  if (!(all(ptrans >= 0) & all(ptrans <= 1))) {
    stop("Probabilities in 'ptrans' must be between [0, 1]")
  }
  
  if (!all(diag(ptrans) == 0)) {
    stop("All the diagonal elements of 'ptrans' must be equal to 0 since transitions to the same state are not allowed")
  }
  
  if (!all((apply(ptrans, 1, sum) >= 1 - sqrt(.Machine$double.eps)) & (apply(ptrans, 1, sum) <= 1 + sqrt(.Machine$double.eps)))) {
    stop("'ptrans' is not a stochastic matrix (column sums accross rows must be equal to one for each row)")
  }
  
  #############################
  # Checking parameter type.sojourn
  #############################
  
  type.sojourn <- match.arg(type.sojourn)
  
  #############################
  # Checking parameter distr
  #############################
  
  if (anyNA(distr)) {
    stop("NA values in 'distr'")
  }
  
  if (type.sojourn == "fij") {
    
    if (!(is.numeric(distr) & is.array(distr) & !is.matrix(distr) & dim(distr)[1] == s & dim(distr)[2] == s)) {
      stop("'distr' must be a numeric array of dimension (s, s, kmax) since 'type.sojourn == \"fij\"'")
    }
    
    temp <- apply(distr, c(1, 2), sum)
    indexdiag <- seq(1, s * s, by = s + 1)
    
    checkTemp <- ((temp[-indexdiag] >= 0) | (temp[-indexdiag] <= sqrt(.Machine$double.eps))) & 
      ((temp[-indexdiag] >= 1 - sqrt(.Machine$double.eps)) | (temp[-indexdiag] <= 1 + sqrt(.Machine$double.eps)))
    
    if (!all(diag(temp) == 0, checkTemp)) {
      stop("'distr' is not a stochastic matrix")
    }
    
  }
  
  if (type.sojourn == "fi" | type.sojourn == "fj") {
    
    if (!(is.numeric(distr) & is.matrix(distr) & dim(distr)[1] == s)) {
      stop("'distr' must be a numeric matrix of dimension (s, kmax) since 'type.sojourn == \"fi\"' or 'type.sojourn == \"fj\"'")
    }
    
    if (!all((apply(distr, 1, sum) >= 1 - sqrt(.Machine$double.eps)) & (apply(distr, 1, sum) <= 1 + sqrt(.Machine$double.eps)))) {
      stop("'distr' is not a stochastic matrix")
    }
    
  }
  
  if (type.sojourn == "f") {
    
    if (!(is.numeric(distr) & is.vector(distr))) {
      stop("'distr' must be a numeric vector of length kmax since 'type.sojourn == \"f\"'")  
    }
    
    if (!((sum(distr) >= 1 - sqrt(.Machine$double.eps)) & (sum(distr) <= 1 + sqrt(.Machine$double.eps)))) {
      stop("'distr' is not a stochastic matrix")
    }
    
  }
  
  if (!all(distr >= 0, distr <= 1)) {
    stop("Probabilities in 'distr' must be between [0, 1]")
  }
  
  
  #############################
  # Checking parameter cens.beg and cens.end
  #############################
  
  if (!(is.logical(cens.beg) & is.logical(cens.end))) {
    stop("'cens.beg' and 'cens.end' must be TRUE or FALSE")
  }
  
  if (type.sojourn == "fij") {
    kmax <- dim(distr)[3]
  } else if (type.sojourn %in% c("fi", "fj")) {
    kmax <- dim(distr)[2]
  } else {
    kmax <- length(distr)
  }
  
  # Add names to the attributes init, ptrans, distr and param for readability
  colnames(ptrans) <- words(length = 1, alphabet = states)
  row.names(ptrans) <- colnames(ptrans)
  names(init) <- colnames(ptrans)
  
  if (is.array(distr) & !(is.matrix(distr))) {
    dimnames(distr) <- rep(list(colnames(ptrans)), 2)
  } else if (is.matrix(distr)) {
    row.names(distr) <- colnames(ptrans)
  }
  
  
  ans <-
    list(
      states = states,
      s = s,
      kmax = kmax,
      init = init,
      type.sojourn = type.sojourn,
      ptrans = ptrans,
      distr = distr,
      cens.beg = cens.beg,
      cens.end = cens.end
    )
  
  class(ans) <- c("smm", "smmnonparametric")
  
  return(ans)
}


#' Function to check if an object is of class `smmnonparametric`
#' 
#' @description `is.smmnonparametric` returns `TRUE` if `x` is an object of 
#'   class `smmnonparametric`.
#' 
#' @param x An arbitrary R object.
#' @return `is.smmnonparametric` returns `TRUE` or `FALSE` depending on whether
#'   `x` is an object of class `smmnonparametric` or not.
#' 
#' @export
#' 
is.smmnonparametric <- function(x) {
  inherits(x, "smmnonparametric")
}


# Method to get the sojourn time distribution f
.get.f.smmnonparametric <- function(x, k) {
  
  if (k <= x$kmax) {
    end <- k
  } else {
    end <- x$kmax
  }
  
  s <- x$s
  
  if (x$type.sojourn == "fij") {
    f <- array(data = 0, dim = c(s, s, k))
    f[, , 1:end] <- x$distr[, , 1:end]
  } else if (x$type.sojourn == "fi" | x$type.sojourn == "fj") {
    f <- matrix(data = 0, nrow = s, ncol = k)
    f[, 1:end] <- x$distr[, 1:end]
  } else if (x$type.sojourn == "f") {
    f <- rep.int(x = 0, times = k)
    f[1:end] <- x$distr[1:end]
  }
  
  return(f)
  
}


# Method to get the sojourn time distribution f
#' @export
get.f.smmnonparametric <- function(x, k) {
  
  #############################
  # Checking parameters k
  #############################
  
  if (!is.numeric(k)) {
    stop("'k' must be a strictly positive integer")
  }
  
  if ((!((k > 0) & ((k %% 1) == 0)))) {
    stop("'k' must be a strictly positive integer")
  }
  
  f <- .get.f.smmnonparametric(x = x, k = k)
  
  return(f)
  
}


# Method to get the number of parameters
# (useful for the computation of criteria such as AIC and BIC)
.get.Kpar.smmnonparametric <- function(x) {
  
  s <- x$s
  kmax <- x$kmax
  type.sojourn <- x$type.sojourn
  
  if (type.sojourn == "fij") {
    kpar <- s * (s - 2) * (kmax - 1)
  } else if (type.sojourn == "fi") {
    kpar <- s * (kmax - 1)
  } else if (type.sojourn == "fj") {
    kpar <- s * (kmax - 1)
  } else {
    kpar <- kmax - 1
  }
  
  return(kpar)
}


# Method to get the number of parameters
# (useful for the computation of criteria such as AIC and BIC)
#' @export
get.Kpar.smmnonparametric <- function(x) {
  
  kpar <- .get.Kpar.smmnonparametric(x)
  
  return(kpar)
}


#' Log-likelihood Function
#' 
#' @description Computation of the log-likelihood for a semi-Markov model
#' 
#' @param x An object of class [smmnonparametric].
#' @param processes An object of class `processesSemiMarkov`.
#' 
#' @noRd
#' 
.logLik.smmnonparametric <- function(x, processes) {
  
  kmax <- processes$kmax
  type.sojourn <- x$type.sojourn
  cens.end <- x$cens.end
  
  #############################
  # Let's compute the log-likelihood
  #############################
  
  init <- x$init # Initial distribution
  Nstarti <- processes$counting$Nstarti
  maskNstarti <- Nstarti != 0 & init != 0
  
  if (!cens.end) {# No censoring
    
    pij <- x$ptrans # Transition matrix
    Nij <- processes$counting$Nij
    maskNij <- Nij != 0 & pij != 0
    
    # Contribution of the initial distribution and 
    # the transition matrix to the log-likelihood
    logLik <- sum(Nstarti[maskNstarti] * log(init[maskNstarti])) +
      sum(Nij[maskNij] * log(pij[maskNij]))
    
    
    # Contribution of the sojourn time distribution
    if (type.sojourn == "fij") {
      
      Nijk <- processes$counting$Nijk
      maskNijk <- Nijk != 0 & x$distr != 0
      
      logLik <- logLik + sum(Nijk[maskNijk] * log(x$distr[maskNijk]))
      
    } else if (type.sojourn == "fi") {
      
      Nik <- processes$counting$Nik
      maskNik <- Nik != 0 & x$distr != 0
      
      logLik <- logLik + sum(Nik[maskNik] * log(x$distr[maskNik]))
      
    } else if (type.sojourn == "fj") {
      
      Njk <- processes$counting$Njk
      maskNjk <- Njk != 0 & x$distr != 0
      
      logLik <- logLik + sum(Njk[maskNjk] * log(x$distr[maskNjk]))
      
    } else {
      
      Nk <- processes$counting$Nk
      maskNk <- Nk != 0 & x$distr != 0
      
      logLik <- logLik + sum(Nk[maskNk] * log(x$distr[maskNk]))
      
    }
    
  } else {# Censoring
    
    s <- processes$s
    Y <- processes$Y
    U <- processes$U
    
    # Computation of Niujv (couple Markov chain (Y, U))
    Y <- lapply(Y, function(x) x - 1)
    Niujv <- getCountingNiuj(Y, U, s, kmax)
    Niu <- apply(Niujv, c(1, 2), sum)
    
    phat <- Niujv / array(Niu, c(s, kmax, s))
    phat[is.na(phat)] <- 0
    
    piujv <-
      apply(
        X = phat,
        MARGIN = c(1, 2, 3),
        FUN = function(x)
          ifelse(length(x[x != 0]) > 0, x[x != 0], 0)
      )
    
    Niub <-
      apply(
        X = Niujv,
        MARGIN = c(1, 2, 3),
        FUN = function(x)
          ifelse(length(x[x != 0]) > 0, x[x != 0], 0)
      )
    
    maskNiub <- Niub != 0 & piujv != 0
    
    logLik <- sum(Nstarti * log(init)) +
      sum(Niub[maskNiub] * log(piujv[maskNiub]))
    
  }
  
  return(logLik)
  
}


#' Akaike Information Criterion (AIC)
#' 
#' @description Computation of the Akaike Information Criterion.
#' 
#' @param x An object of class [smmnonparametric].
#' @param sequences A list of vectors representing the sequences for which the 
#'   AIC will be computed based on `x`.
#' @return Value of the AIC.
#' 
#' @noRd
#' 
#' @export
#' 
AIC.smmnonparametric <- function(object, ...) {
  
  sequences = list(...)[1]
  logLik <- logLik(object, sequences)
  
  kpar <- .get.Kpar(object)
  
  AIC <- -2 * logLik + 2 * kpar
  
  return(AIC)
  
}


#' Bayesian Information Criterion (BIC)
#' 
#' @description Computation of the Bayesian Information Criterion.
#' 
#' @param x An object of class [smmnonparametric].
#' @param sequences A list of vectors representing the sequences for which the 
#'   BIC will be computed based on `x`.
#' @return Value of the BIC.
#' 
#' @noRd
#' 
#' @export
#' 
BIC.smmnonparametric <- function(object, ...) {
  
  sequences = list(...)[1]
  logLik <- logLik(object, sequences)
  
  kpar <- .get.Kpar(object)
  
  n <- sum(sapply(sequences, length))
  
  BIC <- -2 * logLik + log(n) * kpar
  
  return(BIC)
  
}


#' Method to get the semi-Markov kernel \eqn{q}
#' 
#' @description Computes the semi-Markov kernel \eqn{q_{ij}(k)}.
#' 
#' @param x An object of class [smmnonparametric].
#' @param k A positive integer giving the time horizon.
#' @param var Logical. If `TRUE` the asymptotic variance is computed.
#' @param klim Optional. The time horizon used to approximate the series in the
#'   computation of the mean recurrence times vector for the asymptotic 
#'   variance.
#' @return An array giving the value of \eqn{q_{ij}(k)} at each time between 0 
#'   and `k` if `var = FALSE`. If `var = TRUE`, a list containing the 
#'   following components:
#'   \itemize{
#'    \item{x: }{an array giving the value of \eqn{q_{ij}(k)} at each time 
#'      between 0 and `k`;}
#'    \item{sigma2: }{an array giving the asymptotic variance of the estimator 
#'      \eqn{\sigma_{q}^{2}(i, j, k)}.}
#'  }
#'  
#' @noRd
#' 
#' @export
#' 
getKernel.smmnonparametric <- function(x, k, var = FALSE, klim = 10000) {
  
  #############################
  # Checking parameters k
  #############################
  
  if (!is.numeric(k)) {
    stop("'k' must be a positive integer")
  }
  
  if ((!((k >= 0) & ((k %% 1) == 0)))) {
    stop("'k' must be a positive integer")
  }
  
  #############################
  # Checking parameters var
  #############################
  
  if (!is.logical(var)) {
    stop("'var' must be TRUE or FALSE")
  }
  
  #############################
  # Checking parameters klim
  #############################
  
  if (!is.numeric(klim)) {
    stop("'klim' must be a positive integer")
  }
  
  if ((!((klim >= 0) & ((klim %% 1) == 0)))) {
    stop("'klim' must be a positive integer")
  }
  
  
  q <- array(data = 0, dim = c(x$s, x$s, k + 1))
  
  if (k <= x$kmax & k > 0) {
    end <- k
  } else {
    end <- x$kmax
  }
  
  if (k > 0) {
    if (x$type.sojourn == "fij") {
      q[, , 2:(end + 1)] <- array(x$ptrans, c(x$s, x$s, end)) * x$distr[, , 1:end]
    } else if (x$type.sojourn == "fi") {
      q[, , 2:(end + 1)] <- array(x$ptrans, c(x$s, x$s, end)) * aperm(array(x$distr[, 1:end], c(x$s, end, x$s)), c(1, 3, 2))
    } else if (x$type.sojourn == "fj") {
      q[, , 2:(end + 1)] <- array(x$ptrans, c(x$s, x$s, end)) * aperm(array(x$distr[, 1:end], c(x$s, end, x$s)), c(3, 1, 2))
    } else if (x$type.sojourn == "f") {
      q[, , 2:(end + 1)] <- array(x$ptrans, c(x$s, x$s, end)) * aperm(array(x$distr[1:end], c(end, x$s, x$s)), c(2, 3, 1))
    }
  }
  
  if (var) {
    
    mu <- meanRecurrenceTimes(x = x, klim = klim)
    sigma2 <- array(data = mu, dim = c(x$s, x$s, k + 1)) * q * (1 - q)
    
    return(list(x = q, sigma2 = sigma2))
    
  } else {
    
    return(q)
    
  }
  
}


#' Log-likelihood Function
#' 
#' @description Computation of the log-likelihood for a semi-Markov model.
#' 
#' @param x An object of class [smmnonparametric].
#' @param sequences A list of vectors representing the sequences for which the 
#'   log-likelihood will be computed based on `x`.
#' @return Value of the log-likelihood.
#' 
#' @noRd
#' 
#' @export
#' 
logLik.smmnonparametric <- function(object, ...) {
  
  #############################
  # Checking parameters sequences and states
  #############################
  
  sequences = list(...)[1]
  if (!(is.list(sequences) & all(sapply(sequences, class) %in% c("character", "numeric")))) {
    stop("The parameter 'sequences' should be a list of vectors")
  }
  
  if (!all(unique(unlist(sequences)) %in% object$states)) {
    stop("Some states in the list of observed sequences 'sequences' are not in the state space given by the model 'object'")
  }
  
  processes <- processesSemiMarkov(sequences = sequences, states = object$states, verbose = FALSE)
  
  if (!(processes$kmax == object$kmax)) {
    stop("kmax of the given sequences is different from the kmax of the estimated model 'object'")
  }
  
  logLik <- .logLik.smmnonparametric(x = object, processes = processes)
  
  return(logLik)
  
}


#' @export
plot.smmnonparametric <- function(x, i, j, klim = NULL, ...) {
  
  #############################
  # Checking parameters i and j
  #############################
  
  if (x$type.sojourn != "f") {
    
    if (x$type.sojourn == "fi") {
      
      if (!(i %in% x$states)) {
        stop("'i' must be a state among the state space of x")
      }
      
    } else if (x$type.sojourn == "fj") {
      
      if (!(j %in% x$states)) {
        stop("'j' must be a state among the state space of x")
      }
      
    } else {
      
      if (!(i %in% x$states)) {
        stop("'i' must be a state among the state space of x")
      }
      
      if (!(j %in% x$states)) {
        stop("'j' must be a state among the state space of x")
      }
      
      if (i == j) {
        stop(paste0("The conditional distribution for the couple (i = \"", i, "\", j = \"", j, "\") doesn't exist"))
      }
      
    }
    
  }
  
  #############################
  # Checking parameter klim
  #############################
  
  if (!is.null(klim)) {
    if (!((klim > 0) & ((klim %% 1) == 0))) {
      stop("'klim' must be a strictly positive integer")
    }
  }
  
  
  if (x$type.sojourn == "fij") {
    ind.i <- which(x$states == i)
    ind.j <- which(x$states == j)
    f <- x$distr[ind.i, ind.j, ]
    ylab <- bquote(f["i=" ~ .(i) ~ ", j=" ~ .(j)](k))
    main <- paste0("Sojourn time density function for the \n current state i = \"", i, "\" and the next state j = \"", j, "\"")
  } else if (x$type.sojourn == "fi") {
    ind.i <- which(x$states == i)
    f <- x$distr[ind.i, ]
    ylab <- bquote(f["i=" ~ .(i)](k))
    main <- paste0("Sojourn time density function for the current state i = \"", i, "\"")
  } else if (x$type.sojourn == "fj") {
    ind.j <- which(x$states == j)
    f <- x$distr[ind.j, ]
    ylab <- bquote(f["j=" ~ .(j)](k))
    main <- paste0("Sojourn time density function for the next state j = \"", j, "\"")
  } else {
    f <- x$distr
    ylab <- bquote(f(k))
    main <- paste0("Sojourn time density function")
  }
  
  # Compute the quantile of order alpha if klim is NULL
  alpha <- 0.95
  if (is.null(klim)) {
    cdf <- cumsum(f)
    klim <- ifelse(is.na(which(cdf >= alpha)[1]), x$klim, which(cdf >= alpha)[1])
  }
  
  plot.default(x = 1:klim, y = f[1:klim], xlab = "k", ylab = ylab, ...)
  title(main = main)
}


#' @export
simulate.smmnonparametric <- function(object, nsim = 1, seed = NULL, ...) {
  
  ###########################################################
  ###########################################################
  # The algorithm used to simulate the sequences is the following:
  # 
  # 1. Set k = 0, T_{0} = 0 and sample J_{0} from the initial distribution \alpha;
  # 2. Sample the random variable J \sim p(J_{k} , .) and set J_{k+1} = J(\omega);
  # 3. Sample the random variable X \sim F_{J_{k} J_{k+1}}(.)
  # 4. Set T_{k+1} = T_{k} + X;
  # 5. If T_{k+1} >= M, then end;
  # 6. Else, set k = k + 1 and continue to step 2.
  # 
  ###########################################################
  ###########################################################
  
  #############################
  # Checking parameter nsim
  #############################
  
  if (!all(is.numeric(nsim), is.vector(nsim), !anyNA(nsim), nsim > 0, (nsim %% 1) == 0)) {
    stop("'nsim' must be a strictly positive integer or a vector of striclty positive integers")
  }
  
  #############################
  # Checking parameter seed
  #############################
  
  if (is.null(seed)) {
    seed <- round(as.numeric(Sys.time()))
  }
  
  if (!all(is.numeric(seed), seed >= 0, (seed %% 1) == 0)) {
    stop("'seed' must be a positive integer")
  }
  
  
  # Preparation of distribution matrix to ease the sampling process
  distribution <- array(data = NA, dim = c(object$s, object$s, object$kmax))
  if (object$type.sojourn == "fij") {
    distribution <- object$distr
  } else if (object$type.sojourn == "fj") {
    distribution <- aperm(a = array(data = object$distr, dim = c(object$s, object$kmax, object$s)), perm = c(3, 1, 2))
  } else if (object$type.sojourn == "fi") {
    distribution <- aperm(a = array(data = object$distr, dim = c(object$s, object$kmax, object$s)), perm = c(1, 3, 2))
  } else {
    distribution <- aperm(a = array(data = object$distr, dim = c(object$kmax, object$s, object$s)), perm = c(2, 3, 1))
  }
  
  sequences <- simulateNonParam(seed, nsim, object$init, object$ptrans, distribution, 
                                censBeg = object$cens.beg, censEnd = object$cens.end)
  
  sequences <- lapply(sequences, function(x) object$states[x])
  
  return(sequences)
  
}
corentin-dev/smmR documentation built on April 14, 2023, 11:36 p.m.