#' A function to run combined stochastic block and social relations models using the STRAND framework
#'
#' This function allows users to analyse empirical or simulated data using a Bayesian stochastic block and social relations model in Stan. The user must supply a STRAND data object,
#' and a series of formulas following standard lm() style syntax.
#'
#' It is important to note that all individuals block (or group) assignment must be supplied as data. Latent groups will be supported in future releases of STRAND.
#'
#' @param data A data object of class STRAND, prepared using the make_strand_data() function. The data object must include all covariates used in the formulas listed below.
#' @param block_regression A formula for the block-level predictors. This should be specified as in lm(), e.g.: ~ Ethnicity + Sex. Dont use interactions, however.
#' @param focal_regression A formula for the predictors of out-degree (i.e., focal effects, or the effects of individual covariates on outgoing ties). This should be specified as in lm(), e.g.: ~ Age * Education
#' @param target_regression A formula for the predictors of in-degree (i.e., target effects, or the effects of individual covariates on incoming ties). This should be specified as in lm(), e.g.: ~ Age * Education
#' @param dyad_regression A formula for the predictors of dyadic relationships. This should be specified as in lm(), e.g.: ~ Kinship + Friendship
#' @param gaussian_error_priors Prior estimate for the measurement error in a Gaussian model. Base settings assume low very error. Should be a 2-vector for the mean and standard deviation of a zero-truncateed normal.
#' @param mode A string giving the mode that stan should use to fit the model. "mcmc" is default and recommended, and STRAND has functions to make processing the mcmc samples easier. Other options are "optim", to
#' use the optimizer provided by Stan, and "vb" to run the variational inference routine provided by Stan. "optim" and "vb" are fast and can be used for test runs. To process their output, however,
#' users must be familar with [cmdstanr](https://mc-stan.org/users/interfaces/cmdstan). We recommmend that users refer to the [Stan user manual](https://mc-stan.org/users/documentation/) for more information about the different modes that Stan can use.
#' @param return_predicted_network Should predicted tie probabilities be returned? Requires large memory overhead, but can be used to check model fit.
#' @param stan_mcmc_parameters A list of Stan parameters that often need to be tuned. Defaults set to: list(seed = 1, chains = 1, parallel_chains = 1, refresh = 1, iter_warmup = NULL, iter_sampling = NULL, max_treedepth = NULL, adapt_delta = NULL)
#' We recommend 1000 sampling and warmup iterations on a single chain for exploratory model fitting. For final runs, we recommend running 2 to 4 chains for twice as long. Be sure to check r_hat, effective sample size, and traceplots.
#' @param priors A labeled list of priors for the model. User are only permitted to edit the values. Distributions are fixed.
#' @return A STRAND model object containing the data used, and the Stan results.
#' @export
#' @examples
#' \dontrun{
#' fit = fit_block_plus_social_relations_model(data=model_dat,
#' block_regression = ~ Ethnicity,
#' focal_regression = ~ Age * NoFood,
#' target_regression = ~ Age * NoFood,
#' dyad_regression = ~ Relatedness + Friends * SameSex,
#' mode="mcmc",
#' stan_mcmc_parameters = list(seed = 1, chains = 1,
#' parallel_chains = 1, refresh = 1,
#' iter_warmup = 100, iter_sampling = 100,
#' max_treedepth = NULL, adapt_delta = NULL)
#' )
#' }
#'
fit_block_plus_social_relations_model_missings = function(data,
block_regression,
focal_regression,
target_regression,
dyad_regression,
gaussian_error_priors = c(0, 0.5),
mode="mcmc",
return_predicted_network=FALSE,
stan_mcmc_parameters = list(seed = 1, chains = 1, parallel_chains = 1, refresh = 1, iter_warmup = NULL,
iter_sampling = NULL, max_treedepth = NULL, adapt_delta = NULL, init = NULL),
priors=NULL
){
############################################################################# Check inputs
if(attributes(data)$class != "STRAND Data Object"){
stop("fit_block_plus_social_relations_model() requires a data object of class: STRAND Data Object. Please use make_strand_data() to build your data list.")
}
if(!("SRM+SBM" %in% attributes(data)$supported_models)){
stop("The supplied data are not appropriate for a block plus social relations model. Please ensure that self_report data are single sampled and a group variable is provided.")
}
if(data$N_individual_predictors==0 & focal_regression != ~ 1){
stop("No individual covariate data has been provided. focal_regression must equal ~ 1 ")
}
if(data$N_individual_predictors==0 & target_regression != ~ 1){
stop("No individual covariate data has been provided. target_regression must equal ~ 1 ")
}
if(data$N_dyadic_predictors==0 & dyad_regression != ~ 1){
stop("No individual covariate data has been provided. dyad_regression must equal ~ 1 ")
}
if(data$N_block_predictors==0 & block_regression != ~ 1){
stop("No block covariate data has been provided. block_regression must equal ~ 1 ")
}
if(attributes(data)$directed == "undirected" & (focal_regression != target_regression) ){
warning("You have an undirected outcome, but focal_regression and target_regression are not equal.
In undirected models, these should be the same. Rethink your model.")
}
############################################################################# Prepare data and parse formulas
ind_names = colnames(data$individual_predictors)
dyad_names = names(data$dyadic_predictors)
data$imputation = 1
################################################################ Dyad model matrix
if(data$N_dyadic_predictors>0){
dyad_dims = c(data$N_id, data$N_id, length(dyad_names))
dyad_dat = list()
for(i in 1:dyad_dims[3]){
dyad_dat[[i]] = c(data$dyadic_predictors[[i]])
}
#dyad_dat = do.call(rbind.data.frame, dyad_dat)
dyad_dat = as.data.frame(do.call(cbind, dyad_dat))
colnames(dyad_dat) = dyad_names
dyad_model_matrix = model.matrix(dyad_regression, model.frame(~ ., dyad_dat, na.action=na.pass))
dyad_dat_out = array(NA, c(dyad_dims[1], dyad_dims[2], ncol(dyad_model_matrix)))
for(i in 1:ncol(dyad_model_matrix)){
dyad_dat_out[,,i] = matrix(dyad_model_matrix[,i], nrow=dyad_dims[1], ncol=dyad_dims[2])
}
dimnames(dyad_dat_out)[[3]] = colnames(dyad_model_matrix)
data$dyad_set = dyad_dat_out
} else{
data$dyad_set = array(1, c(data$N_id, data$N_id, 1))
}
################################################################ Individual model matrix
if(data$N_individual_predictors>0){
data$focal_set = model.matrix(focal_regression, model.frame(~ ., data$individual_predictors, na.action=na.pass))
data$target_set = model.matrix(target_regression, model.frame(~ ., data$individual_predictors, na.action=na.pass))
} else{
data$focal_set = matrix(1,nrow=data$N_id, ncol=1)
data$target_set = matrix(1,nrow=data$N_id, ncol=1)
}
data$N_params = c(ncol(data$focal_set), ncol(data$target_set), dim(data$dyad_set)[3])
################################################################ Block model matrix
if(data$N_block_predictors>0){
data$block_set = model.matrix(block_regression, model.frame(~ ., data$block_predictors, na.action=na.pass))
} else{
data$block_set = as.array(matrix(1, nrow=data$N_id, ncol=1))
colnames(data$block_set) = "(Intercept)"
}
########################################################### Missing data imputation, prior to block model gen quants
if(data$imputation == 1){
data = process_missings(data)
}
############################################# Extra model model stuff
data$N_group_vars = ncol(data$block_set)
data$N_groups_per_var = rep(NA, data$N_group_vars)
for(i in 1:data$N_group_vars){
data$N_groups_per_var[i] = length(unique(data$block_set[,i]))
}
data$N_groups_per_var = as.array(data$N_groups_per_var)
data$max_N_groups = max(data$N_groups_per_var)
############### Priors
data$export_network = ifelse(return_predicted_network==TRUE, 1, 0)
if(is.null(priors)){
data$priors = make_priors()
} else{
data$priors = priors
}
data$prior_error_mu = gaussian_error_priors[1]
data$prior_error_sigma = gaussian_error_priors[2]
############################################################################# Fit model
model = cmdstanr::cmdstan_model(paste0(path.package("STRAND"),"/","block_plus_social_relations_model_missings.stan"))
data$individual_predictors = NULL
data$dyadic_predictors = NULL
data$block_predictors = NULL
if(mode=="mcmc"){
fit = model$sample(
data = unclass(data),
seed = stan_mcmc_parameters$seed,
chains = stan_mcmc_parameters$chain,
parallel_chains = stan_mcmc_parameters$parallel_chains,
refresh = stan_mcmc_parameters$refresh,
iter_warmup = stan_mcmc_parameters$iter_warmup,
iter_sampling = stan_mcmc_parameters$iter_sampling,
max_treedepth = stan_mcmc_parameters$max_treedepth,
adapt_delta = stan_mcmc_parameters$adapt_delta,
init = stan_mcmc_parameters$init
)
}
if(mode=="vb"){
print("Variational inference is fast, but not always dependable. We recommend using vb only for test runs.")
fit = model$pathfinder(data = unclass(data))
}
if(mode=="optim"){
print("Optimazation is fast, but not always dependable. We recommend using optim only for test runs.")
fit = model$optimize(data = unclass(data), seed = 123)
}
if(! mode %in% c("mcmc", "vb", "optim") ){
stop("Must supply a legal mode value: mcmc, vb, or optim.")
}
bob = list(data=data, fit=fit, return_predicted_network=return_predicted_network )
attr(bob, "class") = "STRAND Model Object"
attr(bob, "fit_type") = mode
attr(bob, "model_type") = "SRM+SBM"
return(bob)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.