#####################################################################################
#
# Multiplex Bernoulli Analyses: Probit versus Logit
#
# Some have argued that Multiplex SRM models require probit links. Here we show
# that the choice of link function is irrelevant to anything other than
# the scale of estimates and the run-time of the models.
#
########################################
# Clear working space
rm(list = ls())
# Load libraries
library(PlvsVltra) # For colors: install_github('ctross/PlvsVltra')
colors = plvs_vltra("dust_storm", rev=FALSE, elements=NULL, show=FALSE)
library(STRAND)
library(stringr)
library(ggplot2)
library(psych)
# Load data
data(RICH_Data)
RICH = RICH_Data
# Outcomes stored as a labeled list
outcome = list(
Give = RICH$Give,
Take = RICH$Take,
Reduce = RICH$Reduce
)
# Dyadic data as a labeled list
dyad = list(
Relatedness = RICH$Relatedness,
Friends = RICH$Friends,
Marriage = RICH$Marriage
)
# Individual data in data-frame
ind = data.frame(
Age = RICH$Individual$Age,
FoodInsecure = RICH$Individual$FoodInsecure,
Wealth = RICH$Individual$Wealth,
Depressed = RICH$Individual$Depressed
)
# Individual blocking measures
groups = data.frame(
Ethnicity = as.factor(RICH$Individual$Ethnicity),
Sex = as.factor(RICH$Individual$Sex)
)
# Merge data
dat = make_strand_data(
outcome = outcome,
block_covariates = groups,
individual_covariates = ind,
dyadic_covariates = dyad,
outcome_mode="bernoulli",
link_mode = "logit",
multiplex = TRUE
)
# Model 1
fit_1 = fit_multiplex_model(
data=dat,
block_regression = ~ 1,
focal_regression = ~ 1,
target_regression = ~ 1,
dyad_regression = ~ 1,
mode="mcmc",
stan_mcmc_parameters = list(
chains = 1,
parallel_chains = 1,
refresh = 1,
iter_warmup = 1000,
iter_sampling = 1000,
max_treedepth = NULL,
adapt_delta = 0.98)
)
# Merge data probit
dat2 = make_strand_data(
outcome = outcome,
block_covariates = groups,
individual_covariates = ind,
dyadic_covariates = dyad,
outcome_mode="bernoulli",
link_mode = "probit",
multiplex = TRUE
)
# Model 2
fit_2 = fit_multiplex_model(
data=dat2,
block_regression = ~ 1,
focal_regression = ~ 1,
target_regression = ~ 1,
dyad_regression = ~ 1,
mode="mcmc",
stan_mcmc_parameters = list(
chains = 1,
parallel_chains = 1,
refresh = 1,
iter_warmup = 1000,
iter_sampling = 1000,
max_treedepth = NULL,
adapt_delta = 0.98)
)
############################################# Results
res_1 = summarize_strand_results(fit_1)
res_2 = summarize_strand_results(fit_2)
colors = plvs_vltra("dust_storm", rev=FALSE, elements=c(2,4))
colors = c(colors[1], "grey90", colors[2])
########################################## Corr plots
multiplex_plot(fit_1, type="dyadic", HPDI=0.9, plot = TRUE, export_as_table = FALSE, height=6, width=7, palette=colors)
multiplex_plot(fit_2, type="dyadic", HPDI=0.9, plot = TRUE, export_as_table = FALSE, height=6, width=7, palette=colors)
multiplex_plot(fit_1, type="generalized", HPDI=0.9, plot = TRUE, export_as_table = FALSE, height=6, width=7, palette=colors)
multiplex_plot(fit_2, type="generalized", HPDI=0.9, plot = TRUE, export_as_table = FALSE, height=6, width=7, palette=colors)
######################################################################## VPCs
VPCs_1 = strand_VPCs(fit_1, n_partitions = 4)
VPCs_2 = strand_VPCs(fit_2, n_partitions = 4)
df1 = data.frame(do.call(rbind, VPCs_1[[2]]))
colnames(df1) = c("Variable", "Median", "L", "H", "Mean", "SD")
df1$Site = "Logit"
df1$Submodel = rep(c("Give","Take","Reduce"),each=4)
df1$Variable2 = rep(c("Focal","Target","Dyadic","Error"),3)
df2 = data.frame(do.call(rbind, VPCs_2[[2]]))
colnames(df2) = c("Variable", "Median", "L", "H", "Mean", "SD")
df2$Site = "Probit"
df2$Submodel = rep(c("Give","Take","Reduce"),each=4)
df2$Variable2 = rep(c("Focal","Target","Dyadic","Error"),3)
df = rbind(df1, df2)
df$Median = as.numeric(df$Median)
df$L = as.numeric(df$L)
df$H = as.numeric(df$H)
df$Submodel = factor(df$Submodel)
df$Submodel = factor(df$Submodel, levels=c("Give", "Take", "Reduce"))
df$Variable2 = factor(df$Variable2)
df$Variable2 = factor(df$Variable2, levels=rev(c("Focal","Target","Dyadic","Error")))
p = ggplot2::ggplot(df, ggplot2::aes(x = Variable2, y = Median, group = Site, color=Site,
ymin = L, ymax = H)) + ggplot2::geom_linerange(size = 1,, position = position_dodge(width = 0.6)) +
ggplot2::geom_point(size = 2,, position = position_dodge(width = 0.6)) + ggplot2::facet_grid(. ~Submodel, scales = "free", space = "free") +
ggplot2::geom_hline(ggplot2::aes(yintercept = 0),
color = "black", linetype = "dashed") + ggplot2::labs(y = "Regression parameters",
x = "") + ggplot2::theme(strip.text.x = ggplot2::element_text(size = 12,
face = "bold"), strip.text.y = ggplot2::element_text(size = 12,
face = "bold"), axis.text = ggplot2::element_text(size = 12),
axis.title.y = ggplot2::element_text(size = 14, face = "bold"),
axis.title.x = ggplot2::element_blank()) + ggplot2::theme(strip.text.y = ggplot2::element_text(angle = 360)) +
ggplot2::coord_flip() + ggplot2::theme(panel.spacing = grid::unit(1,
"lines")) + scale_color_manual(values=c("Logit" = colors[1], "Probit" = colors[3])) + theme(legend.position="bottom")
p
# ggsave("rich_res_vpc_probit_v_logit.pdf",p, width=9, height=3)
######################################################################## Reciprocity
VPCs_1 = strand_VPCs(fit_1, n_partitions = 4, include_reciprocity = TRUE)
VPCs_2 = strand_VPCs(fit_2, n_partitions = 4, include_reciprocity = TRUE)
df1 = data.frame(VPCs_1[[3]])
colnames(df1) = c("Variable", "Median", "L", "H", "Mean", "SD")
df1$Site = "Logit"
df1$Submodel = rep(c("Generalized","Dyadic"),each=15)
df2 = data.frame(VPCs_2[[3]])
colnames(df2) = c("Variable", "Median", "L", "H", "Mean", "SD")
df2$Site = "Probit"
df2$Submodel = rep(c("Generalized","Dyadic"),each=15)
df = rbind(df1, df2)
df$Median = as.numeric(df$Median)
df$L = as.numeric(df$L)
df$H = as.numeric(df$H)
df$Submodel = factor(df$Submodel)
df$Link = df$Site
p = ggplot2::ggplot(df, ggplot2::aes(x = Variable, y = Median, group = Link, color=Link,
ymin = L, ymax = H)) + ggplot2::geom_linerange(size = 1,, position = position_dodge(width = 0.6)) +
ggplot2::geom_point(size = 2,, position = position_dodge(width = 0.6)) + ggplot2::facet_grid(. ~Submodel, scales = "free", space = "free") +
ggplot2::geom_hline(ggplot2::aes(yintercept = 0),
color = "black", linetype = "dashed") + ggplot2::labs(y = "Regression parameters",
x = "") + ggplot2::theme(strip.text.x = ggplot2::element_text(size = 12,
face = "bold"), strip.text.y = ggplot2::element_text(size = 12,
face = "bold"), axis.text = ggplot2::element_text(size = 12),
axis.title.y = ggplot2::element_text(size = 14, face = "bold"),
axis.title.x = ggplot2::element_blank()) + ggplot2::theme(strip.text.y = ggplot2::element_text(angle = 360)) +
ggplot2::coord_flip() + ggplot2::theme(panel.spacing = grid::unit(1,
"lines")) + scale_color_manual(values=c("Logit" = colors[1], "Probit" = colors[3])) + theme(legend.position="bottom")
p
# ggsave("rich_res_recip_probit_v_logit.pdf",p, width=9, height=9)
######################################################################## Reciprocity, adjusted
# Also possible to make amen-style dyadic reciprocity estimates by scaling by ratio of "dyadic variance" to "dyadic variance plus error variance"
VPCs_1 = strand_VPCs(fit_1, n_partitions = 4, include_reciprocity = TRUE, mode="adj")
VPCs_2 = strand_VPCs(fit_2, n_partitions = 4, include_reciprocity = TRUE, mode="adj")
df1 = data.frame(VPCs_1[[3]])
colnames(df1) = c("Variable", "Median", "L", "H", "Mean", "SD")
df1$Site = "Logit"
df1$Submodel = rep(c("Generalized","Dyadic"),each=15)
df2 = data.frame(VPCs_2[[3]])
colnames(df2) = c("Variable", "Median", "L", "H", "Mean", "SD")
df2$Site = "Probit"
df2$Submodel = rep(c("Generalized","Dyadic"),each=15)
df = rbind(df1, df2)
df$Median = as.numeric(df$Median)
df$L = as.numeric(df$L)
df$H = as.numeric(df$H)
df$Submodel = factor(df$Submodel)
df$Link = df$Site
p = ggplot2::ggplot(df, ggplot2::aes(x = Variable, y = Median, group = Link, color=Link,
ymin = L, ymax = H)) + ggplot2::geom_linerange(size = 1,, position = position_dodge(width = 0.6)) +
ggplot2::geom_point(size = 2,, position = position_dodge(width = 0.6)) + ggplot2::facet_grid(. ~Submodel, scales = "free", space = "free") +
ggplot2::geom_hline(ggplot2::aes(yintercept = 0),
color = "black", linetype = "dashed") + ggplot2::labs(y = "Regression parameters",
x = "") + ggplot2::theme(strip.text.x = ggplot2::element_text(size = 12,
face = "bold"), strip.text.y = ggplot2::element_text(size = 12,
face = "bold"), axis.text = ggplot2::element_text(size = 12),
axis.title.y = ggplot2::element_text(size = 14, face = "bold"),
axis.title.x = ggplot2::element_blank()) + ggplot2::theme(strip.text.y = ggplot2::element_text(angle = 360)) +
ggplot2::coord_flip() + ggplot2::theme(panel.spacing = grid::unit(1,
"lines")) + scale_color_manual(values=c("Logit" = colors[1], "Probit" = colors[3])) + theme(legend.position="bottom")
p
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.