# data
CR.model.out <- readRDS("C://Code/data/final_cauchy_2_5.rds")
## ----import-data-previous-data-------------------------------------------
# Overall Data
# source("./Rcode/manuscript-source-code.R", echo = FALSE)
# data --------------------------------------------------------------------
# export data
plot.dat.all1 <- read_csv("C://Users/s435389/Dropbox/data/plot-all-data1.csv")%>%
mutate(Valley = factor(valley, labels = c("Eglinton", "Hollyford")))
# out.final <- read_csv("./data/final-outputs.csv")
# abund.dat5 <- read_csv("./data/abundance5.csv")
plot.dat.all1
## ----reduce-previous-data------------------------------------------------
plot.dat.all1 %>%
select(N, lcl.N, ucl.N, var, grid, Control, Valley, trip, grid.n)
## ----combining-n-rats----------------------------------------------------
# rats have only 80 estimates not 144
meanR <- read_csv("C://Users/s435389/Dropbox/data/mna_allrat.csv") %>%
mutate(Valley = factor(valley, labels = c("Eglinton", "Hollyford")),
trip = trip.no)
meanR <- meanR %>%
select (Valley, grid ,trip ,n) %>%
# select (grid ,trip.no ,n) %>%
mutate(rat.mna = n,
lag.rat.mna = lag(n))
joined.rats <- full_join(plot.dat.all1, meanR, by = c("Valley", "trip", "grid"))
joined.rats
## ----extracting-rates----------------------------------------------------
# extracting rates of increase
# from scratch
# for now this is hand selected...
rate.dat <- data.frame(CR.model.out$summary[, c(1, 2, 3, 7)])
#renaming variables
names(rate.dat) <- c("mean.r", "se.r", "lcl.r", "ucl.r")
rate.dat$var <- rownames(rate.dat)
#reduce dataset to 136 or 144 rows
## right now it is raw data
rate.dat1 <- rate.dat %>%
filter(substr(var, 1, 1) == "r") %>%
mutate(
grid = case_when(
str_detect(var, ",1]") ~ "egl M1",
str_detect(var, ",2]") ~ "egl M2",
str_detect(var, ",3]") ~ "egl MR1",
str_detect(var, ",4]") ~ "egl MR2",
str_detect(var, ",5]") ~ "hol M1",
str_detect(var, ",6]") ~ "hol M2",
str_detect(var, ",7]") ~ "hol MR1",
str_detect(var, ",8]") ~ "hol MR2",
TRUE ~ "other"
),
trip = case_when(
str_detect(string = var, pattern = "r\\[1,") ~ 1,
str_detect(string = var, pattern = "r\\[2,") ~ 2,
str_detect(string = var, pattern = "r\\[3,") ~ 3,
str_detect(string = var, pattern = "r\\[4,") ~ 4,
str_detect(string = var, pattern = "r\\[5,") ~ 5,
str_detect(string = var, pattern = "r\\[6,") ~ 6,
str_detect(string = var, pattern = "r\\[7,") ~ 7,
str_detect(string = var, pattern = "r\\[8,") ~ 8,
str_detect(string = var, pattern = "r\\[9,") ~ 9,
str_detect(string = var, pattern = "r\\[10,") ~ 10,
str_detect(string = var, pattern = "r\\[11,") ~ 11,
str_detect(string = var, pattern = "r\\[12,") ~ 12,
str_detect(string = var, pattern = "r\\[13,") ~ 13,
str_detect(string = var, pattern = "r\\[14,") ~ 14,
str_detect(string = var, pattern = "r\\[15,") ~ 15,
str_detect(string = var, pattern = "r\\[16,") ~ 16,
str_detect(string = var, pattern = "r\\[17,") ~ 17,
str_detect(string = var, pattern = "r\\[18,") ~ 18,
str_detect(string = var, pattern = "r\\[19,") ~ 19,
str_detect(string = var, pattern = "r\\[20,") ~ 20
),
grid.n = as.numeric(factor(grid)),
grid = as.character(grid),
valley = as.character(ifelse(grepl("egl", grid), "egl", "hol"))
)
rate.dat2 <- rate.dat1 %>%
select("mean.r",
"se.r" ,
"lcl.r" ,
"ucl.r",
"trip",
"grid.n",
"grid",
"valley",
"grid.n")
out.full.136 <- left_join(rate.dat2, joined.rats)
out.full.136$mean.r
## ----parameter-data------------------------------------------------------
# variables ---------------------------------------------------------------
# adding parameter estimates as final data
# add in the appropriate parameter estimates
# parameters
out.para <- data.frame(CR.model.out$summary[, c(1, 2, 3, 7)])
# glimpse(out.para)
names(out.para) <- c("mean.b", "se.b", "lcl.b", "ucl.b")
out.para$var <- rownames(out.para)
var_names <- rownames(out.para)
# glimpse(out.para)
out.para1 <- out.para %>%
filter(substr(var, 1, 1) == "b") %>%
mutate(
Control = case_when(
str_detect(var, "\\[1,") ~ "control",
str_detect(var, "\\[2,") ~ "no control",
str_detect(var, "\\[3,") ~ "control",
TRUE ~ "other"
),
Valley = case_when(
str_detect(var, "\\[1,") ~ "egl",
str_detect(var, "\\[2,") ~ "hol",
str_detect(var, "\\[3,") ~ "hol",
TRUE ~ "other"
),
month = case_when(
str_detect(var, ",1]") ~ "Feb",
str_detect(var, ",2]") ~ "May",
str_detect(var, ",3]") ~ "Aug",
str_detect(var, ",4]") ~ "Nov",
TRUE ~ "other"
)
)
## issue is with leveling in model and in months in data!!
# great example here!!
# month = case_when(
# str_detect(var, ",1]") ~ "February",
# str_detect(var, ",2]") ~ "May",
# str_detect(var, ",3]") ~ "August",
# str_detect(var, ",4]") ~ "November",
# TRUE ~ "other"
# )
# final parameter dataset -----------------------------------------------------------
# parameter outputs
out.dat1 <- out.full.136 %>%
group_by(Valley, Control, month) %>%
summarise(dat.mice.mean = mean(N),
dat.seed.mean = mean(log.seed),
dat.rat.mean = mean(lag.rat.mna, na.rm = TRUE),
dat.mice.min = min(N),
dat.seed.min = min(log.seed),
dat.rat.min = min(lag.rat.mna, na.rm = TRUE),
dat.mice.max = max(N),
dat.seed.max = max(log.seed),
dat.rat.max = max(lag.rat.mna)
) %>%
ungroup() %>%
select(Valley,
Control,
month,
dat.seed.mean,
dat.rat.mean,
dat.mice.min,
dat.seed.min,
dat.rat.min,
dat.mice.max,
dat.seed.max,
dat.rat.max)%>%
droplevels()
# out.dat11 <- out.dat1 %>%
# mutate(Valley = factor(valley, labels = c("Eglinton", "Hollyford")),
# trip = trip.no)
# names(plot.dat.all1)
## ------------------------------------------------------------------------
out.para2 <- out.para1[1:48,]
names(out.para2)
out.para3 <- out.para2 %>%
mutate(Valley = factor(Valley, labels = c("Eglinton", "Hollyford")),
Control = factor(Control, labels = c("Yes", "No")),
para = case_when(str_detect(var, "b0") ~ "b0",
str_detect(var, "b.seed") ~ "b.seed",
str_detect(var, "b.dens") ~ "b.dens",
str_detect(var, "b.rat") ~ "b.rat"))
# # merge parameter estimates into out.r
out.final <-left_join(out.para3,out.dat1, by = c("Valley", "Control", "month"))
#remove error estimates for lines
rm.errors <- c("se.b", "lcl.b", "ucl.b", "var")
out.final1 <- out.para3 %>%
select(-rm.errors)
para.plot.dat <- out.final1 %>%
mutate_if(is.factor, as.character) %>%
# filter(month == "Feb") %>%
droplevels() %>%
mutate(Estimate = mean.b)
### With para errors
para.plot.erors <- out.para3 %>%
mutate_if(is.factor, as.character) %>%
# filter(month == "Feb") %>%
droplevels() %>%
mutate(Estimate = mean.b)
para.plot.dat$para <- factor(para.plot.dat$para, labels = c("Density", "Rats", "Seed", "Intercept"))
para.plot.dat1 <- para.plot.dat %>%
mutate_if(is.factor, as.character) %>%
# filter(month == "Feb") %>%
droplevels()
glimpse(para.plot.dat1)
## ----include=FALSE-------------------------------------------------------
# creates the reduced parameter dataset for seeds
# 24 long (x2) 12 replicates
# not true
para.plot.dat1 <- para.plot.dat
# currently 48 long
# %>%
# filter(month == "May")
#now this in 12 deep
out.para1 <- para.plot.dat1 %>%
select(mean.b, Control, Valley, para, month) %>%
spread(key = para, value = mean.b)
# for each group I need to ....
#feb filtered (data)
out.dat1 <- out.full.136 %>%
mutate(lag.sjt = log.seed,
lag.N = lag(N)) %>%
select(-var) %>%
droplevels()
out.dat2 <- out.full.136 %>%
mutate(lag.sjt = log.seed,
lag.N = lag(N)) %>%
group_by(Control, Valley, month) %>%
summarise(
M.seed = mean(lag.sjt, na.rm = TRUE),
M.dens = mean(lag.N, na.rm = TRUE),
M.rat = mean(lag.rat.mna, na.rm = TRUE),
MAX.rat = max(lag.rat.mna, na.rm = TRUE),
MAX.seed = max(lag.sjt, na.rm = TRUE),
MAX.dens = max(lag.N, na.rm = TRUE),
MAX.r = max(mean.r, na.rm = TRUE),
min.seed = 0,
min.dens = min(lag.N, na.rm = TRUE),
min.rat = 0,
min.r = min(mean.r, na.rm = TRUE)) %>%
ungroup()
# #merge two datasets
seed.plots <- left_join(out.dat2, out.para1, by = c("Control", "Valley", "month"))
# predict estimates for seed lines
# old parameter names below (dirct from jags)
# seed.plot1 <- seed.plots %>%
# mutate(pred.mean = b0 + (b.seed * M.seed) + (b.dens*M.dens) + (b.rat*M.rat),
# pred.min = b0 + (b.seed * min.seed) + (b.dens*min.dens) + (b.rat*min.rat),
# pred.max = b0 + (b.seed * MAX.seed) + (b.dens*MAX.dens) + (b.rat*MAX.rat))
seed.plot1 <- seed.plots %>%
mutate(pred.mean = Intercept + (Seed * M.seed) + (Density*M.dens) + (Rats*M.rat),
pred.min = Intercept + (Seed * min.seed) + (Density*M.dens) + (Rats*M.rat),
pred.max = Intercept + (Seed * MAX.seed) + (Density*M.dens) + (Rats*M.rat))
# # r2
# # plot(pred~mean.r, data = seed.feb.plot1)
#
#
# # data in tidyverse for ggplot2
out.seed2 <- seed.plot1 %>%
gather(key = pred.fact, value = mean.r, pred.min:pred.max) %>%
mutate(lag.sjt = ifelse(pred.fact == "pred.min", min.seed, MAX.seed)) %>%
select(Valley, Control, mean.r, lag.sjt, month, pred.fact) %>%
mutate(lag.sjt = ifelse(lag.sjt>0, lag.sjt, 0.1),
treat = paste(Valley,Control))
# # dens-feb ----------------------------------------------------------------
# #spread
# dens.feb.plot1 <- feb.plot %>%
# mutate(pred.min = b0 + (b.dens * dat.mice.min),
# pred.max = (b0 + b.dens * dat.mice.max))
#
# #tidyverse
# out.dens.feb2 <- dens.feb.plot1 %>%
# gather(key = pred.fact, value = mean.r, pred.min:pred.max) %>%
# mutate(lag.sjt = ifelse(pred.fact == "pred.min", dat.mice.min, dat.mice.max)) %>%
# select(valley, control, mean.r, lag.sjt) %>%
# mutate(treat = paste(valley, control))
#
# feb.plot <- out.dat2 %>%
# filter(month == "Feb")
# # rat-feb -----------------------------------------------------------------
# #spread and predict
# rat.feb.plot1 <- feb.plot %>%
# mutate(pred.min = b0 + (b.dens * dat.rat.min),
# pred.max = (b0 + b.dens * dat.rat.max))
#
# #tidyverse
# out.rat.feb2 <- rat.feb.plot1 %>%
# gather(key = pred.fact, value = mean.r, pred.min:pred.max) %>%
# mutate(lag.sjt = ifelse(pred.fact == "pred.min", dat.rat.min, dat.rat.max)) %>%
# select(valley, control, mean.r, lag.sjt) %>%
# mutate(treat = paste(valley, control))
## ----include=FALSE-------------------------------------------------------
# data ----------------------
### Seed lines (feb)
pC.plot.3 <- out.full.136
out.dat1 <- out.full.136 %>%
mutate(lag.sjt = log.seed,
lag.N = lag(N)) %>%
select(-var) %>%
droplevels()
# pc.plot.feb <-
ggplot(out.dat1, aes(y = mean.r, x = lag.sjt)) +
geom_errorbar(aes(ymin = lcl.r, ymax = ucl.r), lwd = 0.75, alpha = 0.2, position=position_dodge(width=30), width = 0) +
geom_point(aes(colour = Valley ,shape = Valley, fill = Control),
stroke = 1.5, size = 2, alpha = 0.7) +
# ggplot(out.seed.feb2, aes(y = mean.r, x = lag.sjt)) +
geom_line(data = out.seed2, aes(y = mean.r, x = lag.sjt, group = treat),size = 0.75, alpha = 0.7) +
geom_point(data = out.seed2, aes(y = mean.r, x = lag.sjt, shape = Valley, fill = Control, group = treat), size = 5) +
facet_grid(Control~month, scales = "free") +
scale_shape_manual(name = "Valley",
labels = c("E", "H"),
values = c(25,21)) +
scale_colour_manual(name = "Stoat control",
labels = c("Eglinton", "Hollyford", "Hollyford"),
values = c("darkgoldenrod","black", "black")) +
scale_fill_manual(name = "Stoat control",
labels = c("Yes", "No", "Yes"),
values = c("darkgoldenrod","black", "darkgoldenrod")) +
#
# # scale_colour_manual(name = "Stoat control",
# # labels = c("E-", "H+", "H-"),
# # values = c("black","black", "black")) +
# # scale_shape_manual(name = "Valley",
# # labels = c("E", "H"),
# # values = c(25,21)) +
# # scale_fill_manual(name = "Stoat control",
# # labels = c("E-", "H+", "H-"),
# # values = c("white","black", "white")) +
xlab(expression(paste("Intake"," ", "Rate"," ","(",italic(S[jt]),")" ))) +
# xlab(expression(atop(paste("Minimum"," ", "number"," "),paste("of", " ", "rats"," ","(",italic(R[jt]),")"))) )+
# xlab(expression(atop(paste("Minimum"," ", "number"," "),paste("of", " ", "rats"," ","(",italic(R[jt]),")"))) )+
ylab(expression(atop(paste("Rate"," ", "of"," ",
"increase"),paste(" ", "of"," ",
"mice"," ","(",italic(r[jt]),")"))) ) +
# scale_y_continuous(expand = c(0,0.01),breaks = seq(-4,4,1)) +
theme_tufte() +
theme_bw() +
theme(strip.background = element_blank(),
strip.text.y = element_blank(),
plot.title = element_text(hjust = 0, size=24, family = "Times", color="black", margin = margin(t = 10, b = 10)),
plot.subtitle=element_text(size=16, face="italic", color="black"),
legend.position = "none",
legend.key = element_blank(),
legend.background = element_rect(fill="white", size=1),
legend.key.size=unit(1,"cm"),
legend.text = element_text(colour = "black", size =16, family = "Times"),
legend.title = element_text(colour = "black", size =16, family = "Times"),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.spacing = unit(2, "lines"),
panel.border = element_blank(),
axis.title.y = element_text(colour = "black",size =20, family = "Times", angle = 90),
axis.title.x = element_text(colour = "black", size =20, family = "Times"),
axis.text.y=element_text(colour = "black",size = 20, family = "Times"),
axis.text.x = element_text(colour = "black", size =20, family = "Times"),
axis.ticks.x = element_line(size = 1),
axis.ticks.y = element_line(size = 1),
axis.line.x = element_line(size = 1),
axis.line.y = element_line(size = 1),
strip.text = element_text(face="bold",colour = "black",size =14, family = "Times"))
## ------------------------------------------------------------------------
# data for lines ----------------------------------------------------------
# Feb - seed
#feb filtered (parameters)
# flip dataset
out.para.feb <- para.plot.dat %>%
filter(month == "Feb") %>%
select(mean.b, Control, Valley, para) %>%
droplevels() %>%
spread(key = para, value = mean.b)
#this gives us 12 times lines to estimate from
# for each group I need to ....
#feb filtered (data)
out.dat1.feb <- out.dat1 %>%
filter(month == "Feb") %>%
mutate(lag.sjt = log.seed,
lag.N = lag(N)) %>%
# select(-var) %>%
droplevels()
out.dat1.feb2 <- out.full.136 %>%
filter(month == "Feb") %>%
mutate(lag.sjt = log.seed,
lag.N = lag(N)) %>%
group_by(Control, Valley,month) %>%
summarise(
M.seed = mean(lag.sjt, na.rm = TRUE),
M.dens = mean(lag.N, na.rm = TRUE),
M.rat = mean(lag.rat.mna, na.rm = TRUE),
MAX.rat = max(lag.rat.mna, na.rm = TRUE),
MAX.seed = max(lag.sjt, na.rm = TRUE),
MAX.dens = max(lag.N, na.rm = TRUE),
MAX.r = max(mean.r, na.rm = TRUE),
min.seed = 0,
min.dens = 0,
min.rat = 0,
min.r = min(mean.r, na.rm = TRUE)) %>%
ungroup()
# #merge two datasets
feb.plot <- left_join(out.dat1.feb2, out.para.feb)
feb.plot1 <- feb.plot %>%
mutate(pred.mean = Intercept + (Seed * M.seed) + (Density*M.dens) + (Rats*M.rat),
pred.min = Intercept + (Seed * min.seed) + (Density*M.dens) + (Rats*M.rat),
pred.max = Intercept + (Seed * MAX.seed) + (Density*M.dens) + (Rats*M.rat))
# # data in tidyverse for ggplot2
out.seed.feb2 <- feb.plot1 %>%
gather(key = pred.fact, value = mean.r, pred.min:pred.max) %>%
mutate(lag.sjt = ifelse(pred.fact == "pred.min", min.seed, MAX.seed)) %>%
select(Valley, Control, mean.r, lag.sjt) %>%
mutate(treat = paste(Valley, Control),
lag.sjt = ifelse(lag.sjt>0, lag.sjt, 0))
## ------------------------------------------------------------------------
# data ----------------------
### Seed lines (feb)
pD.plot.3 <- out.full.136 %>%
filter(month == "Feb") %>%
mutate(lag.sjt = log.seed,
lag.N = lag(N))
pd.plot.feb <- ggplot(pD.plot.3, aes(y = mean.r, x = lag.sjt)) +
geom_errorbar(aes(ymin = lcl.r, ymax = ucl.r), lwd = 0.75, alpha = 0.2, position=position_dodge(width=30), width = 0) +
geom_point(aes(colour = Valley,shape = Valley, fill = Control),
stroke = 1.5, size = 2, alpha = 0.7) +
# ggplot(out.seed.feb2, aes(y = mean.r, x = lag.sjt)) +
geom_line(data = out.seed.feb2, aes(y = mean.r, x = lag.sjt, group = treat),size = 0.75, alpha = 0.7) +
geom_point(data = out.seed.feb2, aes(y = mean.r, x = lag.sjt, shape = Valley, fill = Control, group = treat), size = 5) +
scale_color_manual(name = "Stoat Control",
values = c("white", "black", "white")) +
scale_shape_manual(name = "Ecosystem",
values = c(24, 21)) +
# scale_size_manual(name = "Rat Control", values = c(2.5, 3, 2.5)) +
scale_fill_manual(
name = "Stoat Control",
values = c("cornflowerblue", "darkorange", "cornflowerblue")
) +
# Remove fill legend and replace the fill legend using the newly created size
guides(
col = "none",
size = guide_legend(override.aes = list(
shape = c(15,0),alpha = 1
)),
shape = guide_legend(override.aes = list(
shape = c(24, 21), size = 4
)),
fill = guide_legend(override.aes = list(
col = c("cornflowerblue", "darkorange"),shape = c("square"),
size = 4
))
) +
#
# # scale_colour_manual(name = "Stoat control",
# # labels = c("E-", "H+", "H-"),
# # values = c("black","black", "black")) +
# # scale_shape_manual(name = "Valley",
# # labels = c("E", "H"),
# # values = c(25,21)) +
# # scale_fill_manual(name = "Stoat control",
# # labels = c("E-", "H+", "H-"),
# # values = c("white","black", "white")) +
xlab(expression(paste("Intake"," ", "Rate"," ","(",italic(S[jt]),")" ))) +
# xlab(expression(paste("Mouse"," ", "Density"," ","(",italic(N[jt]),")" ))) +
# xlab(expression(atop(paste("Minimum"," ", "number"," "),paste("of", " ", "rats"," ","(",italic(R[jt]),")"))) )+
# xlab(expression(atop(paste("Minimum"," ", "number"," "),paste("of", " ", "rats"," ","(",italic(R[jt]),")"))) )+
ylab(expression(atop(paste("Rate"," ", "of"," ",
"increase"),paste(" ", "of"," ",
"mice"," ","(",italic(r[jt]),")"))) ) +
# scale_y_continuous(expand = c(0,0.01),breaks = seq(-4,4,1)) +
theme_tufte() +
theme_bw() +
theme(strip.background = element_blank(),
strip.text.y = element_blank(),
plot.title = element_text(hjust = 0, size=24, family = "Times", color="black", margin = margin(t = 10, b = 10)),
plot.subtitle=element_text(size=16, face="italic", color="black"),
legend.position = "none",
legend.key = element_blank(),
legend.background = element_rect(fill="white", size=1),
legend.key.size=unit(1,"cm"),
legend.text = element_text(colour = "black", size =16, family = "Times"),
legend.title = element_text(colour = "black", size =16, family = "Times"),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.spacing = unit(2, "lines"),
panel.border = element_blank(),
axis.title.y = element_text(colour = "black",size =20, family = "Times", angle = 90),
axis.title.x = element_text(colour = "black", size =20, family = "Times"),
axis.text.y=element_text(colour = "black",size = 20, family = "Times"),
axis.text.x = element_text(colour = "black", size =20, family = "Times"),
axis.ticks.x = element_line(size = 1),
axis.ticks.y = element_line(size = 1),
axis.line.x = element_line(size = 1),
axis.line.y = element_line(size = 1),
strip.text = element_text(face="bold",colour = "black",size =14, family = "Times"))
pd.plot.feb
## ------------------------------------------------------------------------
# data for lines ----------------------------------------------------------
# May - seed
#May filtered (parameters)
# flip dataset
out.para.May <- para.plot.dat %>%
filter(month == "May") %>%
select(mean.b, Control, Valley, para) %>%
droplevels() %>%
spread(key = para, value = mean.b)
#this gives us 12 times lines to estimate from
# for each group I need to ....
#May filtered (data)
out.dat1.May <- out.dat1 %>%
filter(month == "May") %>%
mutate(lag.sjt = log.seed,
lag.N = lag(N)) %>%
# select(-var) %>%
droplevels()
out.dat1.May2 <- out.full.136 %>%
filter(month == "May") %>%
mutate(lag.sjt = log.seed,
lag.N = lag(N)) %>%
group_by(Control, Valley, month) %>%
summarise(
M.seed = mean(lag.sjt, na.rm = TRUE),
M.dens = mean(lag.N, na.rm = TRUE),
M.rat = mean(lag.rat.mna, na.rm = TRUE),
MAX.rat = max(lag.rat.mna, na.rm = TRUE),
MAX.seed = max(lag.sjt, na.rm = TRUE),
MAX.dens = max(lag.N, na.rm = TRUE),
MAX.r = max(mean.r, na.rm = TRUE),
min.seed = 0,
min.dens = 0,
min.rat = 0,
min.r = min(mean.r, na.rm = TRUE)) %>%
ungroup()
# #merge two datasets
May.plot <- left_join(out.dat1.May2, out.para.May)
May.plot1 <- May.plot %>%
mutate(pred.mean = Intercept + (Seed * M.seed) + (Density*M.dens) + (Rats*M.rat),
pred.min = Intercept + (Seed * min.seed) + (Density*M.dens) + (Rats*M.rat),
pred.max = Intercept + (Seed * MAX.seed) + (Density*M.dens) + (Rats*M.rat))
# # data in tidyverse for ggplot2
out.seed.May2 <- May.plot1 %>%
gather(key = pred.fact, value = mean.r, pred.min:pred.max) %>%
mutate(lag.sjt = ifelse(pred.fact == "pred.min", min.seed, MAX.seed)) %>%
select(Valley, Control, mean.r, lag.sjt) %>%
mutate(treat = paste(Valley, Control),
lag.sjt = ifelse(lag.sjt>0, lag.sjt, 0))
## ------------------------------------------------------------------------
# data ----------------------
### Seed lines (May)
pD.plot.3 <- out.full.136 %>%
filter(month == "May") %>%
mutate(lag.sjt = log.seed,
lag.N = lag(N))
pd.plot.May <- ggplot(pD.plot.3, aes(y = mean.r, x = lag.sjt)) +
geom_errorbar(aes(ymin = lcl.r, ymax = ucl.r), lwd = 0.75, alpha = 0.2, position=position_dodge(width=30), width = 0) +
geom_point(aes(colour = Valley,shape = Valley, fill = Control),
stroke = 1.5, size = 2, alpha = 0.7) +
# ggplot(out.seed.May2, aes(y = mean.r, x = lag.sjt)) +
geom_line(data = out.seed.May2, aes(y = mean.r, x = lag.sjt, group = treat),size = 0.75, alpha = 0.7) +
geom_point(data = out.seed.May2, aes(y = mean.r, x = lag.sjt, shape = Valley, fill = Control, group = treat), size = 5) +
scale_color_manual(name = "Stoat Control",
values = c("white", "black", "white")) +
scale_shape_manual(name = "Ecosystem",
values = c(24, 21)) +
# scale_size_manual(name = "Rat Control", values = c(2.5, 3, 2.5)) +
scale_fill_manual(
name = "Stoat Control",
values = c("cornflowerblue", "darkorange", "cornflowerblue")
) +
# Remove fill legend and replace the fill legend using the newly created size
guides(
col = "none",
size = guide_legend(override.aes = list(
shape = c(15,0),alpha = 1
)),
shape = guide_legend(override.aes = list(
shape = c(24, 21), size = 4
)),
fill = guide_legend(override.aes = list(
col = c("cornflowerblue", "darkorange"),shape = c("square"),
size = 4
))
) +
#
# # scale_colour_manual(name = "Stoat control",
# # labels = c("E-", "H+", "H-"),
# # values = c("black","black", "black")) +
# # scale_shape_manual(name = "Valley",
# # labels = c("E", "H"),
# # values = c(25,21)) +
# # scale_fill_manual(name = "Stoat control",
# # labels = c("E-", "H+", "H-"),
# # values = c("white","black", "white")) +
xlab(expression(paste("Intake"," ", "Rate"," ","(",italic(S[jt]),")" ))) +
# xlab(expression(paste("Mouse"," ", "Density"," ","(",italic(N[jt]),")" ))) +
# xlab(expression(atop(paste("Minimum"," ", "number"," "),paste("of", " ", "rats"," ","(",italic(R[jt]),")"))) )+
# xlab(expression(atop(paste("Minimum"," ", "number"," "),paste("of", " ", "rats"," ","(",italic(R[jt]),")"))) )+
ylab(expression(atop(paste("Rate"," ", "of"," ",
"increase"),paste(" ", "of"," ",
"mice"," ","(",italic(r[jt]),")"))) ) +
# scale_y_continuous(expand = c(0,0.01),breaks = seq(-4,4,1)) +
theme_tufte() +
theme_bw() +
theme(strip.background = element_blank(),
strip.text.y = element_blank(),
plot.title = element_text(hjust = 0, size=24, family = "Times", color="black", margin = margin(t = 10, b = 10)),
plot.subtitle=element_text(size=16, face="italic", color="black"),
legend.position = "none",
legend.key = element_blank(),
legend.background = element_rect(fill="white", size=1),
legend.key.size=unit(1,"cm"),
legend.text = element_text(colour = "black", size =16, family = "Times"),
legend.title = element_text(colour = "black", size =16, family = "Times"),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.spacing = unit(2, "lines"),
panel.border = element_blank(),
axis.title.y = element_text(colour = "black",size =20, family = "Times", angle = 90),
axis.title.x = element_text(colour = "black", size =20, family = "Times"),
axis.text.y=element_text(colour = "black",size = 20, family = "Times"),
axis.text.x = element_text(colour = "black", size =20, family = "Times"),
axis.ticks.x = element_line(size = 1),
axis.ticks.y = element_line(size = 1),
axis.line.x = element_line(size = 1),
axis.line.y = element_line(size = 1),
strip.text = element_text(face="bold",colour = "black",size =14, family = "Times"))
pd.plot.May
## ------------------------------------------------------------------------
# data for lines ----------------------------------------------------------
# Aug - seed
#Aug filtered (parameters)
# flip dataset
out.para.Aug <- para.plot.dat %>%
filter(month == "Aug") %>%
select(mean.b, Control, Valley, para) %>%
droplevels() %>%
spread(key = para, value = mean.b)
#this gives us 12 times lines to estimate from
# for each group I need to ....
#Aug filtered (data)
out.dat1.Aug <- out.dat1 %>%
filter(month == "Aug") %>%
mutate(lag.sjt = log.seed,
lag.N = N) %>%
# select(-var) %>%
droplevels()
out.dat1.Aug2 <- out.full.136 %>%
filter(month == "Aug") %>%
mutate(lag.sjt = log.seed,
lag.N = N) %>%
group_by(Control, Valley, month) %>%
summarise(
M.seed = mean(lag.sjt, na.rm = TRUE),
M.dens = mean(lag.N, na.rm = TRUE),
M.rat = mean(lag.rat.mna, na.rm = TRUE),
MAX.rat = max(lag.rat.mna, na.rm = TRUE),
MAX.seed = max(lag.sjt, na.rm = TRUE),
MAX.dens = max(lag.N, na.rm = TRUE),
MAX.r = max(mean.r, na.rm = TRUE),
min.seed = 0,
min.dens = 0,
min.rat = 0,
min.r = min(mean.r, na.rm = TRUE)) %>%
ungroup()
# #merge two datasets
Aug.plot <- left_join(out.dat1.Aug2, out.para.Aug)
Aug.plot1 <- Aug.plot %>%
mutate(pred.mean = Intercept + (Seed * M.seed) + (Density*M.dens) + (Rats*M.rat),
pred.min = Intercept + (Seed * min.seed) + (Density*M.dens) + (Rats*M.rat),
pred.max = Intercept + (Seed * MAX.seed) + (Density*M.dens) + (Rats*M.rat))
# # data in tidyverse for ggplot2
out.dens.Aug2 <- Aug.plot1 %>%
gather(key = pred.fact, value = mean.r, pred.min:pred.max) %>%
mutate(lag.sjt = ifelse(pred.fact == "pred.min", min.seed, MAX.seed)) %>%
select(Valley, Control, mean.r, lag.sjt) %>%
mutate(treat = paste(Valley, Control),
lag.sjt = ifelse(lag.sjt>0, lag.sjt, 0))
## ------------------------------------------------------------------------
# data ----------------------
### Seed lines (Aug)
pD.plot.3 <- out.full.136 %>%
filter(month == "Aug") %>%
mutate(lag.sjt = log.seed,
lag.N = N)
pd.plot.Aug <- ggplot(pD.plot.3, aes(y = mean.r, x = lag.sjt)) +
geom_errorbar(aes(ymin = lcl.r, ymax = ucl.r), lwd = 0.75, alpha = 0.2, position=position_dodge(width=30), width = 0) +
geom_point(aes(colour = Control,shape = Valley, fill = Control),
stroke = 1.5, size = 2, alpha = 0.7) +
# ggplot(out.seed.Aug2, aes(y = mean.r, x = lag.sjt)) +
geom_line(data = out.dens.Aug2, aes(y = mean.r, x = lag.sjt, group = treat),size = 0.75, alpha = 0.7) +
geom_point(data = out.dens.Aug2, aes(y = mean.r, x = lag.sjt, shape = Valley, fill = Control, group = treat), size = 5) +
scale_color_manual(name = "Stoat Control",
values = c("white", "black", "white")) +
scale_shape_manual(name = "Ecosystem",
values = c(24, 21)) +
# scale_size_manual(name = "Rat Control", values = c(2.5, 3, 2.5)) +
scale_fill_manual(
name = "Stoat Control",
values = c("cornflowerblue", "darkorange", "cornflowerblue")
) +
# Remove fill legend and replace the fill legend using the newly created size
guides(
col = "none",
size = guide_legend(override.aes = list(
shape = c(15,0),alpha = 1
)),
shape = guide_legend(override.aes = list(
shape = c(24, 21), size = 4
)),
fill = guide_legend(override.aes = list(
col = c("cornflowerblue", "darkorange"),shape = c("square"),
size = 4
))
) +
#
# # scale_colour_manual(name = "Stoat control",
# # labels = c("E-", "H+", "H-"),
# # values = c("black","black", "black")) +
# # scale_shape_manual(name = "Valley",
# # labels = c("E", "H"),
# # values = c(25,21)) +
# # scale_fill_manual(name = "Stoat control",
# # labels = c("E-", "H+", "H-"),
# # values = c("white","black", "white")) +
xlab(expression(paste("Intake"," ", "Rate"," ","(",italic(S[jt]),")" ))) +
# xlab(expression(paste("Mouse"," ", "Density"," ","(",italic(N[jt]),")" ))) +
# xlab(expression(atop(paste("Minimum"," ", "number"," "),paste("of", " ", "rats"," ","(",italic(R[jt]),")"))) )+
# xlab(expression(atop(paste("Minimum"," ", "number"," "),paste("of", " ", "rats"," ","(",italic(R[jt]),")"))) )+
ylab(expression(atop(paste("Rate"," ", "of"," ",
"increase"),paste(" ", "of"," ",
"mice"," ","(",italic(r[jt]),")"))) ) +
# scale_y_continuous(expand = c(0,0.01),breaks = seq(-4,4,1)) +
theme_tufte() +
theme_bw() +
theme(strip.background = element_blank(),
strip.text.y = element_blank(),
plot.title = element_text(hjust = 0, size=24, family = "Times", color="black", margin = margin(t = 10, b = 10)),
plot.subtitle=element_text(size=16, face="italic", color="black"),
legend.position = "none",
legend.key = element_blank(),
legend.background = element_rect(fill="white", size=1),
legend.key.size=unit(1,"cm"),
legend.text = element_text(colour = "black", size =16, family = "Times"),
legend.title = element_text(colour = "black", size =16, family = "Times"),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.spacing = unit(2, "lines"),
panel.border = element_blank(),
axis.title.y = element_text(colour = "black",size =20, family = "Times", angle = 90),
axis.title.x = element_text(colour = "black", size =20, family = "Times"),
axis.text.y=element_text(colour = "black",size = 20, family = "Times"),
axis.text.x = element_text(colour = "black", size =20, family = "Times"),
axis.ticks.x = element_line(size = 1),
axis.ticks.y = element_line(size = 1),
axis.line.x = element_line(size = 1),
axis.line.y = element_line(size = 1),
strip.text = element_text(face="bold",colour = "black",size =14, family = "Times"))
pd.plot.Aug
## ------------------------------------------------------------------------
# data for lines ----------------------------------------------------------
# Nov - seed
#Nov filtered (parameters)
# flip dataset
out.para.Nov <- para.plot.dat %>%
filter(month == "Nov") %>%
select(mean.b, Control, Valley, para) %>%
droplevels() %>%
spread(key = para, value = mean.b)
#this gives us 12 times lines to estimate from
# for each group I need to ....
#Nov filtered (data)
out.dat1.Nov <- out.dat1 %>%
filter(month == "Nov") %>%
mutate(lag.sjt = log.seed,
lag.N = N) %>%
# select(-var) %>%
droplevels()
out.dat1.Nov2 <- out.full.136 %>%
filter(month == "Nov") %>%
mutate(lag.sjt = log.seed,
lag.N = N) %>%
group_by(Control, Valley, month) %>%
summarise(
M.seed = mean(lag.sjt, na.rm = TRUE),
M.dens = mean(lag.N, na.rm = TRUE),
M.rat = mean(lag.rat.mna, na.rm = TRUE),
MAX.rat = max(lag.rat.mna, na.rm = TRUE),
MAX.seed = max(lag.sjt, na.rm = TRUE),
MAX.dens = max(lag.N, na.rm = TRUE),
MAX.r = max(mean.r, na.rm = TRUE),
min.seed = 0,
min.dens = 0,
min.rat = 0,
min.r = min(mean.r, na.rm = TRUE)) %>%
ungroup()
# #merge two datasets
Nov.plot <- left_join(out.dat1.Nov2, out.para.Nov)
Nov.plot1 <- Nov.plot %>%
mutate(pred.mean = Intercept + (Seed * M.seed) + (Density*M.dens) + (Rats*M.rat),
pred.min = Intercept + (Seed * min.seed) + (Density*M.dens) + (Rats*M.rat),
pred.max = Intercept + (Seed * MAX.seed) + (Density*M.dens) + (Rats*M.rat))
# # data in tidyverse for ggplot2
out.dens.Nov2 <- Nov.plot1 %>%
gather(key = pred.fact, value = mean.r, pred.min:pred.max) %>%
mutate(lag.sjt = ifelse(pred.fact == "pred.min", min.seed, MAX.seed)) %>%
select(Valley, Control, mean.r, lag.sjt) %>%
mutate(treat = paste(Valley, Control),
lag.sjt = ifelse(lag.sjt>0, lag.sjt, 0))
## ------------------------------------------------------------------------
# data ----------------------
### Seed lines (Nov)
pD.plot.3 <- out.full.136 %>%
filter(month == "Nov") %>%
mutate(lag.sjt = log.seed,
lag.N = N)
pd.plot.Nov <- ggplot(pD.plot.3, aes(y = mean.r, x = lag.sjt)) +
geom_errorbar(aes(ymin = lcl.r, ymax = ucl.r), lwd = 0.75, alpha = 0.2, position=position_dodge(width=30), width = 0) +
geom_point(aes(colour = Valley,shape = Valley, fill = Control),
stroke = 1.5, size = 2, alpha = 0.7) +
# ggplot(out.seed.Nov2, aes(y = mean.r, x = lag.sjt)) +
geom_line(data = out.dens.Nov2, aes(y = mean.r, x = lag.sjt, group = treat),size = 0.75, alpha = 0.7) +
geom_point(data = out.dens.Nov2, aes(y = mean.r, x = lag.sjt, shape = Valley, fill = Control, group = treat), size = 5) +
scale_color_manual(name = "Stoat Control",
values = c("white", "black", "white")) +
scale_shape_manual(name = "Ecosystem",
values = c(24, 21)) +
# scale_size_manual(name = "Rat Control", values = c(2.5, 3, 2.5)) +
scale_fill_manual(
name = "Stoat Control",
values = c("cornflowerblue", "darkorange", "cornflowerblue")
) +
# Remove fill legend and replace the fill legend using the newly created size
guides(
col = "none",
size = guide_legend(override.aes = list(
shape = c(15,0),alpha = 1
)),
shape = guide_legend(override.aes = list(
shape = c(24, 21), size = 4
)),
fill = guide_legend(override.aes = list(
col = c("cornflowerblue", "darkorange"),shape = c("square"),
size = 4
))
) +
#
# # scale_colour_manual(name = "Stoat control",
# # labels = c("E-", "H+", "H-"),
# # values = c("black","black", "black")) +
# # scale_shape_manual(name = "Valley",
# # labels = c("E", "H"),
# # values = c(25,21)) +
# # scale_fill_manual(name = "Stoat control",
# # labels = c("E-", "H+", "H-"),
# # values = c("white","black", "white")) +
xlab(expression(paste("Intake"," ", "Rate"," ","(",italic(S[jt]),")" ))) +
# xlab(expression(paste("Mouse"," ", "Density"," ","(",italic(N[jt]),")" ))) +
# xlab(expression(atop(paste("Minimum"," ", "number"," "),paste("of", " ", "rats"," ","(",italic(R[jt]),")"))) )+
# xlab(expression(atop(paste("Minimum"," ", "number"," "),paste("of", " ", "rats"," ","(",italic(R[jt]),")"))) )+
ylab(expression(atop(paste("Rate"," ", "of"," ",
"increase"),paste(" ", "of"," ",
"mice"," ","(",italic(r[jt]),")"))) ) +
# scale_y_continuous(expand = c(0,0.01),breaks = seq(-4,4,1)) +
theme_tufte() +
theme_bw() +
theme(strip.background = element_blank(),
strip.text.y = element_blank(),
plot.title = element_text(hjust = 0, size=24, family = "Times", color="black", margin = margin(t = 10, b = 10)),
plot.subtitle=element_text(size=16, face="italic", color="black"),
legend.position = "none",
legend.key = element_blank(),
legend.background = element_rect(fill="white", size=1),
legend.key.size=unit(1,"cm"),
legend.text = element_text(colour = "black", size =16, family = "Times"),
legend.title = element_text(colour = "black", size =16, family = "Times"),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.spacing = unit(2, "lines"),
panel.border = element_blank(),
axis.title.y = element_text(colour = "black",size =20, family = "Times", angle = 90),
axis.title.x = element_text(colour = "black", size =20, family = "Times"),
axis.text.y=element_text(colour = "black",size = 20, family = "Times"),
axis.text.x = element_text(colour = "black", size =20, family = "Times"),
axis.ticks.x = element_line(size = 1),
axis.ticks.y = element_line(size = 1),
axis.line.x = element_line(size = 1),
axis.line.y = element_line(size = 1),
strip.text = element_text(face="bold",colour = "black",size =14, family = "Times"))
pd.plot.Nov
## ----include=FALSE-------------------------------------------------------
# data for lines ----------------------------------------------------------
# Feb - seed
#feb filtered (parameters)
# flip dataset
para.plot.dat1 <- para.plot.dat
out.para1 <- para.plot.dat %>%
select(mean.b, Control, Valley, para, month) %>%
# filter(month == "Feb") %>%
droplevels() %>%
spread(key = para, value = mean.b)
# for each group I need to ....
#feb filtered (data)
out.dat1 <- out.full.136 %>%
filter(month == "Feb") %>%
select(-var) %>%
droplevels()
out.dat2 <- out.full.136 %>%
group_by(Control, Valley, month) %>%
summarise(
M.seed = mean(log.seed, na.rm = TRUE),
M.dens = mean(N, na.rm = TRUE),
M.rat = mean(lag.rat.mna, na.rm = TRUE),
MAX.rat = max(lag.rat.mna, na.rm = TRUE),
MAX.seed = max(log.seed, na.rm = TRUE),
MAX.dens = max(N, na.rm = TRUE),
MAX.r = max(mean.r, na.rm = TRUE),
min.seed = 0,
min.dens = min(N, na.rm = TRUE),
min.rat = 0,
min.r = min(mean.r, na.rm = TRUE)) %>%
ungroup()
# #merge two datasets
dens.plots <- bind_cols(out.dat2, out.para1)
# predict estimates for seed lines
# seed.plot1 <- seed.plots %>%
# mutate(pred.mean = b0 + (b.seed * M.seed) + (b.dens*M.dens) + (b.rat*M.rat),
# pred.min = b0 + (b.seed * min.seed) + (b.dens*min.dens) + (b.rat*min.rat),
# pred.max = b0 + (b.seed * MAX.seed) + (b.dens*MAX.dens) + (b.rat*MAX.rat))
dens.plot1 <- dens.plots %>%
mutate(pred.mean = Intercept + (Seed * M.seed) + (Density*M.dens) + (Rats*M.rat),
pred.min = Intercept + (Seed * M.seed) + (Density*min.dens) + (Rats*M.rat),
pred.max = Intercept + (Seed * M.seed) + (Density*MAX.dens) + (Rats*M.rat))
# # r2
# # plot(pred~mean.r, data = seed.feb.plot1)
#
#
# # data in tidyverse for ggplot2
out.dens2 <- dens.plot1 %>%
gather(key = pred.fact, value = mean.r, pred.min:pred.max) %>%
mutate(lag.N = ifelse(pred.fact == "pred.min", min.dens, MAX.dens)) %>%
select(Valley, Control, mean.r, lag.N, month, pred.fact) %>%
mutate(lag.N = ifelse(lag.N>0, lag.N, 0.1),
treat = paste(Valley,Control))
# dens-feb ----------------------------------------------------------------
#spread
#NOT WORKING
# dens.feb.plot1 <- out.dat1 %>%
# mutate(pred.min = b0 + (b.dens * dat.mice.min),
# pred.max = (b0 + b.dens * dat.mice.max))
#
# #tidyverse
# out.dens.feb2 <- dens.feb.plot1 %>%
# gather(key = pred.fact, value = mean.r, pred.min:pred.max) %>%
# mutate(lag.sjt = ifelse(pred.fact == "pred.min", dat.mice.min, dat.mice.max)) %>%
# select(valley, control, mean.r, lag.sjt) %>%
# mutate(treat = paste(valley, control))
# # rat-feb -----------------------------------------------------------------
# #spread and predict
# rat.feb.plot1 <- feb.plot %>%
# mutate(pred.min = b0 + (b.dens * dat.rat.min),
# pred.max = (b0 + b.dens * dat.rat.max))
#
# #tidyverse
# out.rat.feb2 <- rat.feb.plot1 %>%
# gather(key = pred.fact, value = mean.r, pred.min:pred.max) %>%
# mutate(lag.sjt = ifelse(pred.fact == "pred.min", dat.rat.min, dat.rat.max)) %>%
# select(valley, control, mean.r, lag.sjt) %>%
# mutate(treat = paste(valley, control))
## ----include=FALSE-------------------------------------------------------
# data ----------------------
pC.plot.3 <- out.full.136
out.dat1 <- out.full.136 %>%
mutate(lag.sjt = log.seed,
lag.N = lag(N)) %>%
select(-var) %>%
droplevels()
ggplot(out.dat1, aes(y = mean.r, x = lag.N)) +
geom_errorbar(aes(ymin = lcl.r, ymax = ucl.r), lwd = 0.75, alpha = 0.2, position=position_dodge(width=30), width = 0) +
geom_point(aes(colour = Valley,shape = Valley, fill = Control),
stroke = 1.5, size = 2, alpha = 0.7) +
# ggplot(out.seed.feb2, aes(y = mean.r, x = lag.sjt)) +
geom_line(data = out.dens2, aes(y = mean.r, x = lag.N, group = treat),size = 0.75, alpha = 0.7) +
geom_point(data = out.dens2, aes(y = mean.r, x = lag.N, shape = Valley, fill = Control, group = treat), size = 5) +
facet_grid(Control~month, scales = "free") +
scale_shape_manual(name = "Valley",
labels = c("E", "H"),
values = c(25,21)) +
scale_colour_manual(name = "Stoat control",
labels = c("Eglinton", "Hollyford", "Hollyford"),
values = c("darkgoldenrod","black", "black")) +
scale_fill_manual(name = "Stoat control",
labels = c("Yes", "No", "Yes"),
values = c("darkgoldenrod","black", "darkgoldenrod")) +
#
# # scale_colour_manual(name = "Stoat control",
# # labels = c("E-", "H+", "H-"),
# # values = c("black","black", "black")) +
# # scale_shape_manual(name = "Valley",
# # labels = c("E", "H"),
# # values = c(25,21)) +
# # scale_fill_manual(name = "Stoat control",
# # labels = c("E-", "H+", "H-"),
# # values = c("white","black", "white")) +
xlab(expression(paste("Mouse"," ", "Density"," ","(",italic(N[jt]),")" ))) +
# xlab(expression(atop(paste("Minimum"," ", "number"," "),paste("of", " ", "rats"," ","(",italic(R[jt]),")"))) )+
# xlab(expression(atop(paste("Minimum"," ", "number"," "),paste("of", " ", "rats"," ","(",italic(R[jt]),")"))) )+
ylab(expression(atop(paste("Rate"," ", "of"," ",
"increase"),paste(" ", "of"," ",
"mice"," ","(",italic(r[jt]),")"))) ) +
# scale_y_continuous(expand = c(0,0.01),breaks = seq(-4,4,1)) +
theme_tufte() +
theme_bw() +
theme(strip.background = element_blank(),
strip.text.y = element_blank(),
plot.title = element_text(hjust = 0, size=24, family = "Times", color="black", margin = margin(t = 10, b = 10)),
plot.subtitle=element_text(size=16, face="italic", color="black"),
legend.position = "none",
legend.key = element_blank(),
legend.background = element_rect(fill="white", size=1),
legend.key.size=unit(1,"cm"),
legend.text = element_text(colour = "black", size =16, family = "Times"),
legend.title = element_text(colour = "black", size =16, family = "Times"),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.spacing = unit(2, "lines"),
panel.border = element_blank(),
axis.title.y = element_text(colour = "black",size =20, family = "Times", angle = 90),
axis.title.x = element_text(colour = "black", size =20, family = "Times"),
axis.text.y=element_text(colour = "black",size = 20, family = "Times"),
axis.text.x = element_text(colour = "black", size =20, family = "Times"),
axis.ticks.x = element_line(size = 1),
axis.ticks.y = element_line(size = 1),
axis.line.x = element_line(size = 1),
axis.line.y = element_line(size = 1),
strip.text = element_text(face="bold",colour = "black",size =14, family = "Times"))
## ------------------------------------------------------------------------
# data for lines ----------------------------------------------------------
# Feb - seed
#feb filtered (parameters)
# flip dataset
out.para.feb <- para.plot.dat %>%
filter(month == "Feb") %>%
select(mean.b, Control, Valley, para) %>%
droplevels() %>%
spread(key = para, value = mean.b)
#this gives us 12 times lines to estimate from
# for each group I need to ....
#feb filtered (data)
out.dat1.feb <- out.dat1 %>%
filter(month == "Feb") %>%
mutate(lag.sjt = log.seed,
lag.N = lag(N)) %>%
# select(-var) %>%
droplevels()
out.dat1.feb2 <- out.full.136 %>%
filter(month == "Feb") %>%
mutate(lag.sjt = log.seed,
lag.N = lag(N)) %>%
group_by(Control, Valley) %>%
summarise(
M.seed = mean(lag.sjt, na.rm = TRUE),
M.dens = mean(lag.N, na.rm = TRUE),
M.rat = mean(lag.rat.mna, na.rm = TRUE),
MAX.rat = max(lag.rat.mna, na.rm = TRUE),
MAX.seed = max(lag.sjt, na.rm = TRUE),
MAX.dens = max(lag.N, na.rm = TRUE),
MAX.r = max(mean.r, na.rm = TRUE),
min.seed = 0,
min.dens = 0,
min.rat = 0,
min.r = min(mean.r, na.rm = TRUE)) %>%
ungroup()
# #merge two datasets
feb.plot <- left_join(out.dat1.feb2, out.para.feb)
feb.plot1 <- feb.plot %>%
mutate(pred.mean = Intercept + (Seed * M.seed) + (Density*M.dens) + (Rats*M.rat),
pred.min = Intercept + (Seed * M.seed) + (Density*min.dens) + (Rats*M.dens),
pred.max = Intercept + (Seed * M.seed) + (Density*MAX.dens) + (Rats*M.dens))
# # data in tidyverse for ggplot2
out.dens.feb2 <- feb.plot1 %>%
gather(key = pred.fact, value = mean.r, pred.min:pred.max) %>%
mutate(lag.N = ifelse(pred.fact == "pred.min", min.dens, MAX.dens)) %>%
select(Valley, Control, mean.r, lag.N) %>%
mutate(treat = paste(Valley, Control),
lag.N = ifelse(lag.N>0, lag.N, 0.1))
## ------------------------------------------------------------------------
# data ----------------------
### Seed lines (feb)
pD.plot.3 <- out.full.136 %>%
filter(month == "Feb") %>%
mutate(lag.sjt = log.seed,
lag.N = lag(N))
pd.plot.feb <- ggplot(pD.plot.3, aes(y = mean.r, x = lag.N)) +
geom_errorbar(aes(ymin = lcl.r, ymax = ucl.r), lwd = 0.75, alpha = 0.2, position=position_dodge(width=30), width = 0) +
geom_point(aes(colour = Valley,shape = Valley, fill = Control),
stroke = 1.5, size = 2, alpha = 0.7) +
# ggplot(out.seed.feb2, aes(y = mean.r, x = lag.sjt)) +
geom_line(data = out.dens.feb2, aes(y = mean.r, x = lag.N, group = treat),size = 0.75, alpha = 0.7) +
geom_point(data = out.dens.feb2, aes(y = mean.r, x = lag.N, shape = Valley, fill = Control, group = treat), size = 5) +
scale_color_manual(name = "Stoat Control",
values = c("white", "black", "white")) +
scale_shape_manual(name = "Ecosystem",
values = c(24, 21)) +
# scale_size_manual(name = "Rat Control", values = c(2.5, 3, 2.5)) +
scale_fill_manual(
name = "Stoat Control",
values = c("cornflowerblue", "darkorange", "cornflowerblue")
) +
# Remove fill legend and replace the fill legend using the newly created size
guides(
col = "none",
size = guide_legend(override.aes = list(
shape = c(15,0),alpha = 1
)),
shape = guide_legend(override.aes = list(
shape = c(24, 21), size = 4
)),
fill = guide_legend(override.aes = list(
col = c("cornflowerblue", "darkorange"),shape = c("square"),
size = 4
))
) +
#
# # scale_colour_manual(name = "Stoat control",
# # labels = c("E-", "H+", "H-"),
# # values = c("black","black", "black")) +
# # scale_shape_manual(name = "Valley",
# # labels = c("E", "H"),
# # values = c(25,21)) +
# # scale_fill_manual(name = "Stoat control",
# # labels = c("E-", "H+", "H-"),
# # values = c("white","black", "white")) +
# xlab(expression(paste("Intake"," ", "Rate"," ","(",italic(S[jt]),")" ))) +
xlab(expression(paste("Mouse"," ", "Density"," ","(",italic(N[jt]),")" ))) +
# xlab(expression(atop(paste("Minimum"," ", "number"," "),paste("of", " ", "rats"," ","(",italic(R[jt]),")"))) )+
# xlab(expression(atop(paste("Minimum"," ", "number"," "),paste("of", " ", "rats"," ","(",italic(R[jt]),")"))) )+
ylab(expression(atop(paste("Rate"," ", "of"," ",
"increase"),paste(" ", "of"," ",
"mice"," ","(",italic(r[jt]),")"))) ) +
# scale_y_continuous(expand = c(0,0.01),breaks = seq(-4,4,1)) +
theme_tufte() +
theme_bw() +
theme(strip.background = element_blank(),
strip.text.y = element_blank(),
plot.title = element_text(hjust = 0, size=24, family = "Times", color="black", margin = margin(t = 10, b = 10)),
plot.subtitle=element_text(size=16, face="italic", color="black"),
legend.position = "none",
legend.key = element_blank(),
legend.background = element_rect(fill="white", size=1),
legend.key.size=unit(1,"cm"),
legend.text = element_text(colour = "black", size =16, family = "Times"),
legend.title = element_text(colour = "black", size =16, family = "Times"),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.spacing = unit(2, "lines"),
panel.border = element_blank(),
axis.title.y = element_text(colour = "black",size =20, family = "Times", angle = 90),
axis.title.x = element_text(colour = "black", size =20, family = "Times"),
axis.text.y=element_text(colour = "black",size = 20, family = "Times"),
axis.text.x = element_text(colour = "black", size =20, family = "Times"),
axis.ticks.x = element_line(size = 1),
axis.ticks.y = element_line(size = 1),
axis.line.x = element_line(size = 1),
axis.line.y = element_line(size = 1),
strip.text = element_text(face="bold",colour = "black",size =14, family = "Times"))
pd.plot.feb
## ------------------------------------------------------------------------
# data for lines ----------------------------------------------------------
# May - seed
#May filtered (parameters)
# flip dataset
out.para.May <- para.plot.dat %>%
filter(month == "May") %>%
select(mean.b, Control, Valley, para) %>%
droplevels() %>%
spread(key = para, value = mean.b)
#this gives us 12 times lines to estimate from
# for each group I need to ....
#May filtered (data)
out.dat1.May <- out.full.136 %>%
filter(month == "May") %>%
mutate(lag.sjt = lag(log.seed),
lag.N = lag(N)) %>%
select(-var) %>%
droplevels()
out.dat1.May2 <- out.full.136 %>%
filter(month == "May") %>%
mutate(lag.sjt = lag(log.seed),
lag.N = lag(N)) %>%
group_by(Control, Valley) %>%
summarise(
M.seed = mean(lag.sjt, na.rm = TRUE),
M.dens = mean(lag.N, na.rm = TRUE),
M.rat = mean(lag.rat.mna, na.rm = TRUE),
MAX.rat = max(lag.rat.mna, na.rm = TRUE),
MAX.seed = max(lag.sjt, na.rm = TRUE),
MAX.dens = max(lag.N, na.rm = TRUE),
MAX.r = max(mean.r, na.rm = TRUE),
min.seed = 0,
min.dens = 0,
min.rat = 0,
min.r = min(mean.r, na.rm = TRUE)) %>%
ungroup()
# #merge two datasets
May.plot <- left_join(out.dat1.May2 ,out.para.May)
# predict estimates for seed lines
# seed.May.plot1 <- May.plot %>%
# mutate(pred.mean = b0 + (b.seed * M.seed) + (b.dens*M.dens) + (b.rat*M.rat),
# pred.min = b0 + (b.seed * min.seed) + (b.dens*min.dens) + (b.rat*min.rat),
# pred.max = b0 + (b.seed * MAX.seed) + (b.dens*MAX.dens) + (b.rat*MAX.rat))
May.plot1 <- May.plot %>%
mutate(pred.mean = Intercept + (Seed * M.seed) + (Density*M.dens) + (Rats*M.rat),
pred.min = Intercept + (Seed * M.seed) + (Density*min.dens) + (Rats*M.dens),
pred.max = Intercept + (Seed * M.seed) + (Density*MAX.dens) + (Rats*M.dens))
# # r2
# # plot(pred~mean.r, data = seed.May.plot1)
#
#
# # data in tidyverse for ggplot2
out.dens.May2 <- May.plot1 %>%
gather(key = pred.fact, value = mean.r, pred.min:pred.max) %>%
mutate(lag.N = ifelse(pred.fact == "pred.min", min.dens, MAX.dens)) %>%
select(Valley, Control, mean.r, lag.N) %>%
mutate(treat = paste(Valley, Control),
lag.N = ifelse(lag.N>0, lag.N, 0.1))
#
# # dens-May ----------------------------------------------------------------
# #spread
# dens.May.plot1 <- May.plot %>%
# mutate(pred.min = b0 + (b.dens * dat.mice.min),
# pred.max = (b0 + b.dens * dat.mice.max))
#
# #tidyverse
# out.dens.May2 <- dens.May.plot1 %>%
# gather(key = pred.fact, value = mean.r, pred.min:pred.max) %>%
# mutate(lag.sjt = ifelse(pred.fact == "pred.min", dat.mice.min, dat.mice.max)) %>%
# select(valley, control, mean.r, lag.sjt) %>%
# mutate(treat = paste(valley, control))
#
#
# # rat-May -----------------------------------------------------------------
# #spread and predict
# rat.May.plot1 <- May.plot %>%
# mutate(pred.min = b0 + (b.dens * dat.rat.min),
# pred.max = (b0 + b.dens * dat.rat.max))
#
# #tidyverse
# out.rat.May2 <- rat.May.plot1 %>%
# gather(key = pred.fact, value = mean.r, pred.min:pred.max) %>%
# mutate(lag.sjt = ifelse(pred.fact == "pred.min", dat.rat.min, dat.rat.max)) %>%
# select(valley, control, mean.r, lag.sjt) %>%
# mutate(treat = paste(valley, control))
## ------------------------------------------------------------------------
# data ----------------------
### Seed lines (May)
pD.plot.3 <- out.full.136 %>%
filter(month == "May") %>%
mutate(lag.sjt = lag(log.seed),
lag.N = lag(N))
# pc.plot.May <-
ggplot(pD.plot.3, aes(y = mean.r, x = lag.N)) +
geom_errorbar(aes(ymin = lcl.r, ymax = ucl.r), lwd = 0.75, alpha = 0.2, position=position_dodge(width=30), width = 0) +
geom_point(aes(colour = Valley,shape = Valley, fill = Control),
stroke = 1.5, size = 2, alpha = 0.7) +
# ggplot(out.seed.feb2, aes(y = mean.r, x = lag.sjt)) +
geom_line(data = out.dens.May2, aes(y = mean.r, x = lag.N, group = treat),size = 0.75, alpha = 0.7) +
geom_point(data = out.dens.May2, aes(y = mean.r, x = lag.N, shape = Valley, fill = Control, group = treat), size = 5) +
scale_color_manual(name = "Stoat Control",
values = c("white", "black", "white")) +
scale_shape_manual(name = "Ecosystem",
values = c(24, 21)) +
# scale_size_manual(name = "Rat Control", values = c(2.5, 3, 2.5)) +
scale_fill_manual(
name = "Stoat Control",
values = c("cornflowerblue", "darkorange", "cornflowerblue")
) +
# Remove fill legend and replace the fill legend using the newly created size
guides(
col = "none",
size = guide_legend(override.aes = list(
shape = c(15,0),alpha = 1
)),
shape = guide_legend(override.aes = list(
shape = c(24, 21), size = 4
)),
fill = guide_legend(override.aes = list(
col = c("cornflowerblue", "darkorange"),shape = c("square"),
size = 4
))
) +
#
# # scale_colour_manual(name = "Stoat control",
# # labels = c("E-", "H+", "H-"),
# # values = c("black","black", "black")) +
# # scale_shape_manual(name = "Valley",
# # labels = c("E", "H"),
# # values = c(25,21)) +
# # scale_fill_manual(name = "Stoat control",
# # labels = c("E-", "H+", "H-"),
# # values = c("white","black", "white")) +
# xlab(expression(paste("Intake"," ", "Rate"," ","(",italic(S[jt]),")" ))) +
xlab(expression(paste("Mouse"," ", "Density"," ","(",italic(N[jt]),")" ))) +
# xlab(expression(atop(paste("Minimum"," ", "number"," "),paste("of", " ", "rats"," ","(",italic(R[jt]),")"))) )+
# xlab(expression(atop(paste("Minimum"," ", "number"," "),paste("of", " ", "rats"," ","(",italic(R[jt]),")"))) )+
ylab(expression(atop(paste("Rate"," ", "of"," ",
"increase"),paste(" ", "of"," ",
"mice"," ","(",italic(r[jt]),")"))) ) +
# scale_y_continuous(expand = c(0,0.01),breaks = seq(-4,4,1)) +
theme_tufte() +
theme_bw() +
theme(strip.background = element_blank(),
strip.text.y = element_blank(),
plot.title = element_text(hjust = 0, size=24, family = "Times", color="black", margin = margin(t = 10, b = 10)),
plot.subtitle=element_text(size=16, face="italic", color="black"),
legend.position = "none",
legend.key = element_blank(),
legend.background = element_rect(fill="white", size=1),
legend.key.size=unit(1,"cm"),
legend.text = element_text(colour = "black", size =16, family = "Times"),
legend.title = element_text(colour = "black", size =16, family = "Times"),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.spacing = unit(2, "lines"),
panel.border = element_blank(),
axis.title.y = element_text(colour = "black",size =20, family = "Times", angle = 90),
axis.title.x = element_text(colour = "black", size =20, family = "Times"),
axis.text.y=element_text(colour = "black",size = 20, family = "Times"),
axis.text.x = element_text(colour = "black", size =20, family = "Times"),
axis.ticks.x = element_line(size = 1),
axis.ticks.y = element_line(size = 1),
axis.line.x = element_line(size = 1),
axis.line.y = element_line(size = 1),
strip.text = element_text(face="bold",colour = "black",size =14, family = "Times"))
# pd.plot.May
## ------------------------------------------------------------------------
# data for lines ----------------------------------------------------------
# Aug - density
#Aug filtered (parameters)
# flip dataset
out.para.Aug <- para.plot.dat %>%
filter(month == "Aug") %>%
select(mean.b, Control, Valley, para) %>%
droplevels() %>%
spread(key = para, value = mean.b)
#this gives us 12 times lines to estimate from
# for each group I need to ....
#Aug filtered (data)
out.dat1.Aug <- out.full.136 %>%
filter(month == "Aug") %>%
mutate(lag.sjt = lag(log.seed),
lag.N = lag(N)) %>%
select(-var) %>%
droplevels()
out.dat1.Aug2 <- out.full.136 %>%
filter(month == "Aug") %>%
mutate(lag.sjt = lag(log.seed),
lag.N = lag(N)) %>%
group_by(Control, Valley) %>%
summarise(
M.seed = mean(lag.sjt, na.rm = TRUE),
M.dens = mean(lag.N, na.rm = TRUE),
M.rat = mean(lag.rat.mna, na.rm = TRUE),
MAX.rat = max(lag.rat.mna, na.rm = TRUE),
MAX.seed = max(lag.sjt, na.rm = TRUE),
MAX.dens = max(lag.N, na.rm = TRUE),
MAX.r = max(mean.r, na.rm = TRUE),
min.seed = 0,
min.dens = 0,
min.rat = 0,
min.r = min(mean.r, na.rm = TRUE)) %>%
ungroup()
# #merge two datasets
Aug.plot <- left_join(out.dat1.Aug2 ,out.para.Aug)
# predict estimates for seed lines
# seed.Aug.plot1 <- Aug.plot %>%
# mutate(pred.mean = b0 + (b.seed * M.seed) + (b.dens*M.dens) + (b.rat*M.rat),
# pred.min = b0 + (b.seed * min.seed) + (b.dens*min.dens) + (b.rat*min.rat),
# pred.max = b0 + (b.seed * MAX.seed) + (b.dens*MAX.dens) + (b.rat*MAX.rat))
Aug.plot1 <- Aug.plot %>%
mutate(pred.mean = Intercept + (Seed * M.seed) + (Density*M.dens) + (Rats*M.rat),
pred.min = Intercept + (Seed * M.seed) + (Density*min.dens) + (Rats*M.dens),
pred.max = Intercept + (Seed * M.seed) + (Density*MAX.dens) + (Rats*M.dens))
# # r2
# # plot(pred~mean.r, data = seed.Aug.plot1)
#
#
# # data in tidyverse for ggplot2
out.dens.Aug2 <- Aug.plot1 %>%
gather(key = pred.fact, value = mean.r, pred.min:pred.max) %>%
mutate(lag.N = ifelse(pred.fact == "pred.min", min.dens, MAX.dens)) %>%
select(Valley, Control, mean.r, lag.N) %>%
mutate(treat = paste(Valley, Control),
lag.N = ifelse(lag.N>0, lag.N, 0.1))
## ------------------------------------------------------------------------
# data ----------------------
### Seed lines (Aug)
pD.plot.3 <- out.full.136 %>%
filter(month == "Aug") %>%
mutate(lag.sjt = lag(log.seed),
lag.N = lag(N))
# pc.plot.Aug <-
ggplot(pD.plot.3, aes(y = mean.r, x = lag.N)) +
geom_errorbar(aes(ymin = lcl.r, ymax = ucl.r), lwd = 0.75, alpha = 0.2, position=position_dodge(width=30), width = 0) +
geom_point(aes(colour = Valley,shape = Valley, fill = Control),
stroke = 1.5, size = 2, alpha = 0.7) +
# ggplot(out.seed.Aug2, aes(y = mean.r, x = lag.sjt)) +
geom_line(data = out.dens.Aug2, aes(y = mean.r, x = lag.N, group = treat),size = 0.75, alpha = 0.7) +
geom_point(data = out.dens.Aug2, aes(y = mean.r, x = lag.N, shape = Valley, fill = Control, group = treat), size = 5) +
scale_color_manual(name = "Stoat Control",
values = c("white", "black", "white")) +
scale_shape_manual(name = "Ecosystem",
values = c(24, 21)) +
# scale_size_manual(name = "Rat Control", values = c(2.5, 3, 2.5)) +
scale_fill_manual(
name = "Stoat Control",
values = c("cornflowerblue", "darkorange", "cornflowerblue")
) +
# Remove fill legend and replace the fill legend using the newly created size
guides(
col = "none",
size = guide_legend(override.aes = list(
shape = c(15,0),alpha = 1
)),
shape = guide_legend(override.aes = list(
shape = c(24, 21), size = 4
)),
fill = guide_legend(override.aes = list(
col = c("cornflowerblue", "darkorange"),shape = c("square"),
size = 4
))
) +
#
# # scale_colour_manual(name = "Stoat control",
# # labels = c("E-", "H+", "H-"),
# # values = c("black","black", "black")) +
# # scale_shape_manual(name = "Valley",
# # labels = c("E", "H"),
# # values = c(25,21)) +
# # scale_fill_manual(name = "Stoat control",
# # labels = c("E-", "H+", "H-"),
# # values = c("white","black", "white")) +
# xlab(expression(paste("Intake"," ", "Rate"," ","(",italic(S[jt]),")" ))) +
xlab(expression(paste("Mouse"," ", "Density"," ","(",italic(N[jt]),")" ))) +
# xlab(expression(atop(paste("Minimum"," ", "number"," "),paste("of", " ", "rats"," ","(",italic(R[jt]),")"))) )+
# xlab(expression(atop(paste("Minimum"," ", "number"," "),paste("of", " ", "rats"," ","(",italic(R[jt]),")"))) )+
ylab(expression(atop(paste("Rate"," ", "of"," ",
"increase"),paste(" ", "of"," ",
"mice"," ","(",italic(r[jt]),")"))) ) +
# scale_y_continuous(expand = c(0,0.01),breaks = seq(-4,4,1)) +
theme_tufte() +
theme_bw() +
theme(strip.background = element_blank(),
strip.text.y = element_blank(),
plot.title = element_text(hjust = 0, size=24, family = "Times", color="black", margin = margin(t = 10, b = 10)),
plot.subtitle=element_text(size=16, face="italic", color="black"),
legend.position = "none",
legend.key = element_blank(),
legend.background = element_rect(fill="white", size=1),
legend.key.size=unit(1,"cm"),
legend.text = element_text(colour = "black", size =16, family = "Times"),
legend.title = element_text(colour = "black", size =16, family = "Times"),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.spacing = unit(2, "lines"),
panel.border = element_blank(),
axis.title.y = element_text(colour = "black",size =20, family = "Times", angle = 90),
axis.title.x = element_text(colour = "black", size =20, family = "Times"),
axis.text.y=element_text(colour = "black",size = 20, family = "Times"),
axis.text.x = element_text(colour = "black", size =20, family = "Times"),
axis.ticks.x = element_line(size = 1),
axis.ticks.y = element_line(size = 1),
axis.line.x = element_line(size = 1),
axis.line.y = element_line(size = 1),
strip.text = element_text(face="bold",colour = "black",size =14, family = "Times"))
# pd.plot.May
## ------------------------------------------------------------------------
# data for lines ----------------------------------------------------------
# Nov - seed
#Nov filtered (parameters)
# flip dataset
out.para.Nov <- para.plot.dat %>%
filter(month == "Nov") %>%
select(mean.b, Control, Valley, para) %>%
droplevels() %>%
spread(key = para, value = mean.b)
#this gives us 12 times lines to estimate from
# for each group I need to ....
#Nov filtered (data)
out.dat1.Nov <- out.full.136 %>%
filter(month == "Nov") %>%
mutate(lag.sjt = lag(log.seed),
lag.N = lag(N)) %>%
select(-var) %>%
droplevels()
out.dat1.Nov2 <- out.full.136 %>%
filter(month == "Nov") %>%
mutate(lag.sjt = lag(log.seed),
lag.N = lag(N)) %>%
group_by(Control, Valley) %>%
summarise(
M.seed = mean(lag.sjt, na.rm = TRUE),
M.dens = mean(lag.N, na.rm = TRUE),
M.rat = mean(lag.rat.mna, na.rm = TRUE),
MAX.rat = max(lag.rat.mna, na.rm = TRUE),
MAX.seed = max(lag.sjt, na.rm = TRUE),
MAX.dens = max(lag.N, na.rm = TRUE),
MAX.r = max(mean.r, na.rm = TRUE),
min.seed = 0,
min.dens = 0,
min.rat = 0,
min.r = min(mean.r, na.rm = TRUE)) %>%
ungroup()
# #merge two datasets
Nov.plot <- left_join(out.dat1.Nov2 ,out.para.Nov)
# predict estimates for seed lines
# seed.Nov.plot1 <- Nov.plot %>%
# mutate(pred.mean = b0 + (b.seed * M.seed) + (b.dens*M.dens) + (b.rat*M.rat),
# pred.min = b0 + (b.seed * min.seed) + (b.dens*min.dens) + (b.rat*min.rat),
# pred.max = b0 + (b.seed * MAX.seed) + (b.dens*MAX.dens) + (b.rat*MAX.rat))
Nov.plot1 <- Nov.plot %>%
mutate(pred.mean = Intercept + (Seed * M.seed) + (Density*M.dens) + (Rats*M.rat),
pred.min = Intercept + (Seed * M.seed) + (Density*min.dens) + (Rats*M.dens),
pred.max = Intercept + (Seed * M.seed) + (Density*MAX.dens) + (Rats*M.dens))
# # r2
# # plot(pred~mean.r, data = seed.Nov.plot1)
#
#
# # data in tidyverse for ggplot2
out.dens.Nov2 <- Nov.plot1 %>%
gather(key = pred.fact, value = mean.r, pred.min:pred.max) %>%
mutate(lag.N = ifelse(pred.fact == "pred.min", min.dens, MAX.dens)) %>%
select(Valley, Control, mean.r, lag.N) %>%
mutate(treat = paste(Valley, Control),
lag.N = ifelse(lag.N>0, lag.N, 0.1))
#
# # dens-Nov ----------------------------------------------------------------
# #spread
# dens.Nov.plot1 <- Nov.plot %>%
# mutate(pred.min = b0 + (b.dens * dat.mice.min),
# pred.max = (b0 + b.dens * dat.mice.max))
#
# #tidyverse
# out.dens.Nov2 <- dens.Nov.plot1 %>%
# gather(key = pred.fact, value = mean.r, pred.min:pred.max) %>%
# mutate(lag.sjt = ifelse(pred.fact == "pred.min", dat.mice.min, dat.mice.max)) %>%
# select(valley, control, mean.r, lag.sjt) %>%
# mutate(treat = paste(valley, control))
#
#
# # rat-Nov -----------------------------------------------------------------
# #spread and predict
# rat.Nov.plot1 <- Nov.plot %>%
# mutate(pred.min = b0 + (b.dens * dat.rat.min),
# pred.max = (b0 + b.dens * dat.rat.max))
#
# #tidyverse
# out.rat.Nov2 <- rat.Nov.plot1 %>%
# gather(key = pred.fact, value = mean.r, pred.min:pred.max) %>%
# mutate(lag.sjt = ifelse(pred.fact == "pred.min", dat.rat.min, dat.rat.max)) %>%
# select(valley, control, mean.r, lag.sjt) %>%
# mutate(treat = paste(valley, control))
## ------------------------------------------------------------------------
# data ----------------------
### Seed lines (Nov)
pD.plot.3 <- out.full.136 %>%
filter(month == "Nov") %>%
mutate(lag.sjt = lag(log.seed),
lag.N = lag(N))
# pc.plot.Nov <-
ggplot(pD.plot.3, aes(y = mean.r, x = lag.N)) +
geom_errorbar(aes(ymin = lcl.r, ymax = ucl.r), lwd = 0.75, alpha = 0.2, position=position_dodge(width=30), width = 0) +
geom_point(aes(colour = Valley,shape = Valley, fill = Control),
stroke = 1.5, size = 2, alpha = 0.7) +
# ggplot(out.seed.Nov2, aes(y = mean.r, x = lag.sjt)) +
geom_line(data = out.dens.Nov2, aes(y = mean.r, x = lag.N, group = treat),size = 0.75, alpha = 0.7) +
geom_point(data = out.dens.Nov2, aes(y = mean.r, x = lag.N, shape = Valley, fill = Control, group = treat), size = 5) +
# facet_wrap(~month, scales = "free")+
scale_shape_manual(name = "Valley",
labels = c("E", "H"),
values = c(25,21)) +
scale_colour_manual(name = "Stoat control",
labels = c("Eglinton", "Hollyford", "Hollyford"),
values = c("darkgoldenrod","black", "black")) +
scale_fill_manual(name = "Stoat control",
labels = c("Yes", "No", "Yes"),
values = c("darkgoldenrod","black", "darkgoldenrod")) +
#
# # scale_colour_manual(name = "Stoat control",
# # labels = c("E-", "H+", "H-"),
# # values = c("black","black", "black")) +
# # scale_shape_manual(name = "Valley",
# # labels = c("E", "H"),
# # values = c(25,21)) +
# # scale_fill_manual(name = "Stoat control",
# # labels = c("E-", "H+", "H-"),
# # values = c("white","black", "white")) +
# xlab(expression(paste("Intake"," ", "Rate"," ","(",italic(S[jt]),")" ))) +
xlab(expression(paste("Mouse"," ", "Density"," ","(",italic(N[jt]),")" ))) +
# xlab(expression(atop(paste("Minimum"," ", "number"," "),paste("of", " ", "rats"," ","(",italic(R[jt]),")"))) )+
# xlab(expression(atop(paste("Minimum"," ", "number"," "),paste("of", " ", "rats"," ","(",italic(R[jt]),")"))) )+
ylab(expression(atop(paste("Rate"," ", "of"," ",
"increase"),paste(" ", "of"," ",
"mice"," ","(",italic(r[jt]),")"))) ) +
# scale_y_continuous(expand = c(0,0.01),breaks = seq(-4,4,1)) +
theme_tufte() +
theme_bw() +
theme(strip.background = element_blank(),
strip.text.y = element_blank(),
plot.title = element_text(hjust = 0, size=24, family = "Times", color="black", margin = margin(t = 10, b = 10)),
plot.subtitle=element_text(size=16, face="italic", color="black"),
legend.position = "none",
legend.key = element_blank(),
legend.background = element_rect(fill="white", size=1),
legend.key.size=unit(1,"cm"),
legend.text = element_text(colour = "black", size =16, family = "Times"),
legend.title = element_text(colour = "black", size =16, family = "Times"),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.spacing = unit(2, "lines"),
panel.border = element_blank(),
axis.title.y = element_text(colour = "black",size =20, family = "Times", angle = 90),
axis.title.x = element_text(colour = "black", size =20, family = "Times"),
axis.text.y=element_text(colour = "black",size = 20, family = "Times"),
axis.text.x = element_text(colour = "black", size =20, family = "Times"),
axis.ticks.x = element_line(size = 1),
axis.ticks.y = element_line(size = 1),
axis.line.x = element_line(size = 1),
axis.line.y = element_line(size = 1),
strip.text = element_text(face="bold",colour = "black",size =14, family = "Times"))
## ----include = FALSE-----------------------------------------------------
# data for lines ----------------------------------------------------------
# Feb - rats
#feb filtered (parameters)
# flip dataset
para.plot.dat1 <- para.plot.dat
out.para1 <- para.plot.dat %>%
select(mean.b, Control, Valley, para, month) %>%
droplevels() %>%
spread(key = para, value = mean.b)
# for each group I need to ....
#feb filtered (data)
out.dat1 <- out.full.136 %>%
mutate(lag.sjt = lag(log.seed),
lag.N = lag(N),
lag.R = lag.rat.mna) %>%
select(-var) %>%
droplevels()
out.dat2 <- out.full.136 %>%
mutate(lag.sjt = lag(log.seed),
lag.N = lag(N),
lag.R = lag.rat.mna) %>%
group_by(Control, Valley, month) %>%
summarise(
M.seed = mean(lag.sjt, na.rm = TRUE),
M.dens = mean(lag.N, na.rm = TRUE),
M.rat = mean(lag.R, na.rm = TRUE),
MAX.rat = max(lag.R, na.rm = TRUE),
MAX.seed = max(lag.sjt, na.rm = TRUE),
MAX.dens = max(lag.N, na.rm = TRUE),
MAX.r = max(mean.r, na.rm = TRUE),
min.seed = 0,
min.dens = min(lag.N, na.rm = TRUE),
min.rat = 0,
min.r = min(mean.r, na.rm = TRUE)) %>%
ungroup()
# #merge two datasets
dens.plots <- left_join(out.dat2, out.para1, by = c("Control", "Valley", "month"))
# predict estimates for seed lines
# seed.plot1 <- seed.plots %>%
# mutate(pred.mean = b0 + (b.seed * M.seed) + (b.dens*M.dens) + (b.rat*M.rat),
# pred.min = b0 + (b.seed * min.seed) + (b.dens*min.dens) + (b.rat*min.rat),
# pred.max = b0 + (b.seed * MAX.seed) + (b.dens*MAX.dens) + (b.rat*MAX.rat))
dens.plot1 <- dens.plots %>%
mutate(pred.mean = Intercept + (Seed * M.seed) + (Density*M.dens) + (Rats*M.rat),
pred.min = Intercept + (Seed * M.seed) + (Density*M.dens) + (Rats*min.rat),
pred.max = Intercept + (Seed * M.seed) + (Density*M.dens) + (Rats*MAX.rat))
# # r2
# # plot(pred~mean.r, data = seed.feb.plot1)
#
#
# # data in tidyverse for ggplot2
out.dens2 <- dens.plot1 %>%
gather(key = pred.fact, value = mean.r, pred.min:pred.max) %>%
mutate(lag.R = ifelse(pred.fact == "pred.min", min.rat, MAX.rat)) %>%
select(Valley, Control, mean.r, lag.R, month, pred.fact) %>%
mutate(lag.R = ifelse(lag.R>0, lag.R, 0.1),
treat = paste(Valley,Control))
#
# # dens-feb ----------------------------------------------------------------
# #spread
# dens.feb.plot1 <- feb.plot %>%
# mutate(pred.min = b0 + (b.dens * dat.mice.min),
# pred.max = (b0 + b.dens * dat.mice.max))
#
# #tidyverse
# out.dens.feb2 <- dens.feb.plot1 %>%
# gather(key = pred.fact, value = mean.r, pred.min:pred.max) %>%
# mutate(lag.sjt = ifelse(pred.fact == "pred.min", dat.mice.min, dat.mice.max)) %>%
# select(valley, control, mean.r, lag.sjt) %>%
# mutate(treat = paste(valley, control))
#
#
# # rat-feb -----------------------------------------------------------------
# #spread and predict
# rat.feb.plot1 <- feb.plot %>%
# mutate(pred.min = b0 + (b.dens * dat.rat.min),
# pred.max = (b0 + b.dens * dat.rat.max))
#
# #tidyverse
# out.rat.feb2 <- rat.feb.plot1 %>%
# gather(key = pred.fact, value = mean.r, pred.min:pred.max) %>%
# mutate(lag.sjt = ifelse(pred.fact == "pred.min", dat.rat.min, dat.rat.max)) %>%
# select(valley, control, mean.r, lag.sjt) %>%
# mutate(treat = paste(valley, control))
## ----include = FALSE-----------------------------------------------------
# data ----------------------
pC.plot.3 <- out.full.136
out.dat1 <- out.full.136 %>%
mutate(lag.sjt = lag(log.seed),
lag.N = lag(N),
lag.R = lag.rat.mna) %>%
select(-var) %>%
droplevels()
ggplot(out.dat1, aes(y = mean.r, x = lag.R)) +
geom_errorbar(aes(ymin = lcl.r, ymax = ucl.r), lwd = 0.75, alpha = 0.2, position=position_dodge(width=30), width = 0) +
geom_point(aes(colour = Valley,shape = Valley, fill = Control),
stroke = 1.5, size = 2, alpha = 0.7) +
# ggplot(out.seed.feb2, aes(y = mean.r, x = lag.sjt)) +
geom_line(data = out.dens2, aes(y = mean.r, x = lag.R, group = treat),size = 0.75, alpha = 0.7) +
geom_point(data = out.dens2, aes(y = mean.r, x = lag.R, shape = Valley, fill = Control, group = treat), size = 5) +
facet_grid(Control~month, scales = "free") +
scale_shape_manual(name = "Valley",
labels = c("E", "H"),
values = c(25,21)) +
scale_colour_manual(name = "Stoat control",
labels = c("Eglinton", "Hollyford", "Hollyford"),
values = c("darkgoldenrod","black", "black")) +
scale_fill_manual(name = "Stoat control",
labels = c("Yes", "No", "Yes"),
values = c("darkgoldenrod","black", "darkgoldenrod")) +
#
# # scale_colour_manual(name = "Stoat control",
# # labels = c("E-", "H+", "H-"),
# # values = c("black","black", "black")) +
# # scale_shape_manual(name = "Valley",
# # labels = c("E", "H"),
# # values = c(25,21)) +
# # scale_fill_manual(name = "Stoat control",
# # labels = c("E-", "H+", "H-"),
# # values = c("white","black", "white")) +
# xlab(expression(paste("Mouse"," ", "Density"," ","(",italic(N[jt]),")" ))) +
# xlab(expression(atop(paste("Minimum"," ", "number"," "),paste("of", " ", "rats"," ","(",italic(R[jt]),")"))) )+
xlab(expression(atop(paste("Minimum"," ", "number"," "),paste("of", " ", "rats"," ","(",italic(R[jt]),")"))) )+
ylab(expression(atop(paste("Rate"," ", "of"," ",
"increase"),paste(" ", "of"," ",
"mice"," ","(",italic(r[jt]),")"))) ) +
# scale_y_continuous(expand = c(0,0.01),breaks = seq(-4,4,1)) +
theme_tufte() +
theme_bw() +
theme(strip.background = element_blank(),
strip.text.y = element_blank(),
plot.title = element_text(hjust = 0, size=24, family = "Times", color="black", margin = margin(t = 10, b = 10)),
plot.subtitle=element_text(size=16, face="italic", color="black"),
legend.position = "none",
legend.key = element_blank(),
legend.background = element_rect(fill="white", size=1),
legend.key.size=unit(1,"cm"),
legend.text = element_text(colour = "black", size =16, family = "Times"),
legend.title = element_text(colour = "black", size =16, family = "Times"),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.spacing = unit(2, "lines"),
panel.border = element_blank(),
axis.title.y = element_text(colour = "black",size =20, family = "Times", angle = 90),
axis.title.x = element_text(colour = "black", size =20, family = "Times"),
axis.text.y=element_text(colour = "black",size = 20, family = "Times"),
axis.text.x = element_text(colour = "black", size =20, family = "Times"),
axis.ticks.x = element_line(size = 1),
axis.ticks.y = element_line(size = 1),
axis.line.x = element_line(size = 1),
axis.line.y = element_line(size = 1),
strip.text = element_text(face="bold",colour = "black",size =14, family = "Times"))
## ------------------------------------------------------------------------
# data for lines ----------------------------------------------------------
# Feb - rats
#feb filtered (parameters)
# flip dataset
para.plot.dat1 <- para.plot.dat %>%
filter(month == "Feb")
out.para1 <- para.plot.dat %>%
filter(month == "Feb") %>%
select(mean.b, Control, Valley, para, month) %>%
droplevels() %>%
spread(key = para, value = mean.b)
# for each group I need to ....
#feb filtered (data)
out.dat1 <- out.full.136 %>%
filter(month == "Feb") %>%
mutate(lag.sjt = lag(log.seed),
lag.N = lag(N),
lag.R = lag.rat.mna) %>%
select(-var) %>%
droplevels()
out.dat2 <- out.full.136 %>%
filter(month == "Feb") %>%
mutate(lag.sjt = lag(log.seed),
lag.N = lag(N),
lag.R = lag.rat.mna) %>%
group_by(Control, Valley, month) %>%
summarise(
M.seed = mean(lag.sjt, na.rm = TRUE),
M.dens = mean(lag.N, na.rm = TRUE),
M.rat = mean(lag.R, na.rm = TRUE),
MAX.rat = max(lag.R, na.rm = TRUE),
MAX.seed = max(lag.sjt, na.rm = TRUE),
MAX.dens = max(lag.N, na.rm = TRUE),
MAX.r = max(mean.r, na.rm = TRUE),
min.seed = 0,
min.dens = min(lag.N, na.rm = TRUE),
min.rat = 0,
min.r = min(mean.r, na.rm = TRUE)) %>%
ungroup()
# #merge two datasets
dens.plots <- left_join(out.dat2, out.para1, by = c("Control", "Valley", "month"))
# predict estimates for seed lines
# seed.plot1 <- seed.plots %>%
# mutate(pred.mean = b0 + (b.seed * M.seed) + (b.dens*M.dens) + (b.rat*M.rat),
# pred.min = b0 + (b.seed * min.seed) + (b.dens*min.dens) + (b.rat*min.rat),
# pred.max = b0 + (b.seed * MAX.seed) + (b.dens*MAX.dens) + (b.rat*MAX.rat))
dens.plot1 <- dens.plots %>%
mutate(pred.mean = Intercept + (Seed * M.seed) + (Density*M.dens) + (Rats*M.rat),
pred.min = Intercept + (Seed * M.seed) + (Density*M.dens) + (Rats*min.rat),
pred.max = Intercept + (Seed * M.seed) + (Density*M.dens) + (Rats*MAX.rat))
# # r2
# # plot(pred~mean.r, data = seed.feb.plot1)
#
#
# # data in tidyverse for ggplot2
out.dens2 <- dens.plot1 %>%
gather(key = pred.fact, value = mean.r, pred.min:pred.max) %>%
mutate(lag.R = ifelse(pred.fact == "pred.min", min.rat, MAX.rat)) %>%
select(Valley, Control, mean.r, lag.R, month, pred.fact) %>%
mutate(lag.R = ifelse(lag.R>0, lag.R, 0.1),
treat = paste(Valley,Control))
## ------------------------------------------------------------------------
# data ----------------------
pC.plot.3 <- out.full.136 %>%
filter(month == "Feb")
out.dat1 <- out.full.136 %>%
filter(month == "Feb") %>%
mutate(lag.sjt = lag(log.seed),
lag.N = lag(N),
lag.R = lag.rat.mna) %>%
select(-var) %>%
droplevels()
ggplot(out.dat1, aes(y = mean.r, x = lag.R)) +
geom_errorbar(aes(ymin = lcl.r, ymax = ucl.r), lwd = 0.75, alpha = 0.2, position=position_dodge(width=30), width = 0) +
geom_point(aes(colour = Valley,shape = Valley, fill = Control),
stroke = 1.5, size = 2, alpha = 0.7) +
# ggplot(out.seed.feb2, aes(y = mean.r, x = lag.sjt)) +
geom_line(data = out.dens2, aes(y = mean.r, x = lag.R, group = treat),size = 0.75, alpha = 0.7) +
geom_point(data = out.dens2, aes(y = mean.r, x = lag.R, shape = Valley, fill = Control, group = treat), size = 5) +
scale_color_manual(name = "Stoat Control",
values = c("white", "black", "white")) +
scale_shape_manual(name = "Ecosystem",
values = c(24, 21)) +
# scale_size_manual(name = "Rat Control", values = c(2.5, 3, 2.5)) +
scale_fill_manual(
name = "Stoat Control",
values = c("cornflowerblue", "darkorange", "cornflowerblue")
) +
# Remove fill legend and replace the fill legend using the newly created size
guides(
col = "none",
size = guide_legend(override.aes = list(
shape = c(15,0),alpha = 1
)),
shape = guide_legend(override.aes = list(
shape = c(24, 21), size = 4
)),
fill = guide_legend(override.aes = list(
col = c("cornflowerblue", "darkorange"),shape = c("square"),
size = 4
))
) +
#
# # scale_colour_manual(name = "Stoat control",
# # labels = c("E-", "H+", "H-"),
# # values = c("black","black", "black")) +
# # scale_shape_manual(name = "Valley",
# # labels = c("E", "H"),
# # values = c(25,21)) +
# # scale_fill_manual(name = "Stoat control",
# # labels = c("E-", "H+", "H-"),
# # values = c("white","black", "white")) +
# xlab(expression(paste("Intake"," ", "Rate"," ","(",italic(S[jt]),")" ))) +
# xlab(expression(paste("Mouse"," ", "Density"," ","(",italic(N[jt]),")" ))) +
xlab(expression(atop(paste("Minimum"," ", "number"," "),paste("of", " ", "rats"," ","(",italic(R[jt]),")"))) )+
ylab(expression(atop(paste("Rate"," ", "of"," ",
"increase"),paste(" ", "of"," ",
"mice"," ","(",italic(r[jt]),")"))) ) +
# scale_y_continuous(expand = c(0,0.01),breaks = seq(-4,4,1)) +
theme_tufte() +
theme_bw() +
theme(strip.background = element_blank(),
strip.text.y = element_blank(),
plot.title = element_text(hjust = 0, size=24, family = "Times", color="black", margin = margin(t = 10, b = 10)),
plot.subtitle=element_text(size=16, face="italic", color="black"),
legend.position = "none",
legend.key = element_blank(),
legend.background = element_rect(fill="white", size=1),
legend.key.size=unit(1,"cm"),
legend.text = element_text(colour = "black", size =16, family = "Times"),
legend.title = element_text(colour = "black", size =16, family = "Times"),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.spacing = unit(2, "lines"),
panel.border = element_blank(),
axis.title.y = element_text(colour = "black",size =20, family = "Times", angle = 90),
axis.title.x = element_text(colour = "black", size =20, family = "Times"),
axis.text.y=element_text(colour = "black",size = 20, family = "Times"),
axis.text.x = element_text(colour = "black", size =20, family = "Times"),
axis.ticks.x = element_line(size = 1),
axis.ticks.y = element_line(size = 1),
axis.line.x = element_line(size = 1),
axis.line.y = element_line(size = 1),
strip.text = element_text(face="bold",colour = "black",size =14, family = "Times"))
# pd.plot.May
## ------------------------------------------------------------------------
# data for lines ----------------------------------------------------------
# May - rats
#May filtered (parameters)
# flip dataset
para.plot.dat1 <- para.plot.dat %>%
filter(month == "May")
out.para1 <- para.plot.dat %>%
filter(month == "May") %>%
select(mean.b, Control, Valley, para, month) %>%
droplevels() %>%
spread(key = para, value = mean.b)
# for each group I need to ....
#May filtered (data)
out.dat1 <- out.full.136 %>%
filter(month == "May") %>%
mutate(lag.sjt = lag(log.seed),
lag.N = lag(N),
lag.R = lag.rat.mna) %>%
select(-var) %>%
droplevels()
out.dat2 <- out.full.136 %>%
filter(month == "May") %>%
mutate(lag.sjt = lag(log.seed),
lag.N = lag(N),
lag.R = lag.rat.mna) %>%
group_by(Control, Valley, month) %>%
summarise(
M.seed = mean(lag.sjt, na.rm = TRUE),
M.dens = mean(lag.N, na.rm = TRUE),
M.rat = mean(lag.R, na.rm = TRUE),
MAX.rat = max(lag.R, na.rm = TRUE),
MAX.seed = max(lag.sjt, na.rm = TRUE),
MAX.dens = max(lag.N, na.rm = TRUE),
MAX.r = max(mean.r, na.rm = TRUE),
min.seed = 0,
min.dens = min(lag.N, na.rm = TRUE),
min.rat = 0,
min.r = min(mean.r, na.rm = TRUE)) %>%
ungroup()
# #merge two datasets
dens.plots <- left_join(out.dat2, out.para1, by = c("Control", "Valley", "month"))
# predict estimates for seed lines
# seed.plot1 <- seed.plots %>%
# mutate(pred.mean = b0 + (b.seed * M.seed) + (b.dens*M.dens) + (b.rat*M.rat),
# pred.min = b0 + (b.seed * min.seed) + (b.dens*min.dens) + (b.rat*min.rat),
# pred.max = b0 + (b.seed * MAX.seed) + (b.dens*MAX.dens) + (b.rat*MAX.rat))
dens.plot1 <- dens.plots %>%
mutate(pred.mean = Intercept + (Seed * M.seed) + (Density*M.dens) + (Rats*M.rat),
pred.min = Intercept + (Seed * M.seed) + (Density*M.dens) + (Rats*min.rat),
pred.max = Intercept + (Seed * M.seed) + (Density*M.dens) + (Rats*MAX.rat))
# # r2
# # plot(pred~mean.r, data = seed.May.plot1)
#
#
# # data in tidyverse for ggplot2
out.dens2 <- dens.plot1 %>%
gather(key = pred.fact, value = mean.r, pred.min:pred.max) %>%
mutate(lag.R = ifelse(pred.fact == "pred.min", min.rat, MAX.rat)) %>%
select(Valley, Control, mean.r, lag.R, month, pred.fact) %>%
mutate(lag.R = ifelse(lag.R>0, lag.R, 0.1),
treat = paste(Valley,Control))
## ------------------------------------------------------------------------
# data ----------------------
pC.plot.3 <- out.full.136 %>%
filter(month == "May")
out.dat1 <- out.full.136 %>%
filter(month == "May") %>%
mutate(lag.sjt = lag(log.seed),
lag.N = lag(N),
lag.R = lag.rat.mna) %>%
select(-var) %>%
droplevels()
ggplot(out.dat1, aes(y = mean.r, x = lag.R)) +
geom_errorbar(aes(ymin = lcl.r, ymax = ucl.r), lwd = 0.75, alpha = 0.2, position=position_dodge(width=30), width = 0) +
geom_point(aes(colour = Valley,shape = Valley, fill = Control),
stroke = 1.5, size = 2, alpha = 0.7) +
# ggplot(out.seed.May2, aes(y = mean.r, x = lag.sjt)) +
geom_line(data = out.dens2, aes(y = mean.r, x = lag.R, group = treat),size = 0.75, alpha = 0.7) +
geom_point(data = out.dens2, aes(y = mean.r, x = lag.R, shape = Valley, fill = Control, group = treat), size = 5) +
scale_color_manual(name = "Stoat Control",
values = c("white", "black", "white")) +
scale_shape_manual(name = "Ecosystem",
values = c(24, 21)) +
# scale_size_manual(name = "Rat Control", values = c(2.5, 3, 2.5)) +
scale_fill_manual(
name = "Stoat Control",
values = c("cornflowerblue", "darkorange", "cornflowerblue")
) +
# Remove fill legend and replace the fill legend using the newly created size
guides(
col = "none",
size = guide_legend(override.aes = list(
shape = c(15,0),alpha = 1
)),
shape = guide_legend(override.aes = list(
shape = c(24, 21), size = 4
)),
fill = guide_legend(override.aes = list(
col = c("cornflowerblue", "darkorange"),shape = c("square"),
size = 4
))
) +
#
# # scale_colour_manual(name = "Stoat control",
# # labels = c("E-", "H+", "H-"),
# # values = c("black","black", "black")) +
# # scale_shape_manual(name = "Valley",
# # labels = c("E", "H"),
# # values = c(25,21)) +
# # scale_fill_manual(name = "Stoat control",
# # labels = c("E-", "H+", "H-"),
# # values = c("white","black", "white")) +
# xlab(expression(paste("Intake"," ", "Rate"," ","(",italic(S[jt]),")" ))) +
# xlab(expression(paste("Mouse"," ", "Density"," ","(",italic(N[jt]),")" ))) +
xlab(expression(atop(paste("Minimum"," ", "number"," "),paste("of", " ", "rats"," ","(",italic(R[jt]),")"))) )+
ylab(expression(atop(paste("Rate"," ", "of"," ",
"increase"),paste(" ", "of"," ",
"mice"," ","(",italic(r[jt]),")"))) ) +
# scale_y_continuous(expand = c(0,0.01),breaks = seq(-4,4,1)) +
theme_tufte() +
theme_bw() +
theme(strip.background = element_blank(),
strip.text.y = element_blank(),
plot.title = element_text(hjust = 0, size=24, family = "Times", color="black", margin = margin(t = 10, b = 10)),
plot.subtitle=element_text(size=16, face="italic", color="black"),
legend.position = "none",
legend.key = element_blank(),
legend.background = element_rect(fill="white", size=1),
legend.key.size=unit(1,"cm"),
legend.text = element_text(colour = "black", size =16, family = "Times"),
legend.title = element_text(colour = "black", size =16, family = "Times"),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.spacing = unit(2, "lines"),
panel.border = element_blank(),
axis.title.y = element_text(colour = "black",size =20, family = "Times", angle = 90),
axis.title.x = element_text(colour = "black", size =20, family = "Times"),
axis.text.y=element_text(colour = "black",size = 20, family = "Times"),
axis.text.x = element_text(colour = "black", size =20, family = "Times"),
axis.ticks.x = element_line(size = 1),
axis.ticks.y = element_line(size = 1),
axis.line.x = element_line(size = 1),
axis.line.y = element_line(size = 1),
strip.text = element_text(face="bold",colour = "black",size =14, family = "Times"))
# pd.plot.May
## ------------------------------------------------------------------------
# data for lines ----------------------------------------------------------
# Aug - rats
#Aug filtered (parameters)
# flip dataset
para.plot.dat1 <- para.plot.dat %>%
filter(month == "Aug")
out.para1 <- para.plot.dat %>%
filter(month == "Aug") %>%
select(mean.b, Control, Valley, para, month) %>%
droplevels() %>%
spread(key = para, value = mean.b)
# for each group I need to ....
#Aug filtered (data)
out.dat1 <- out.full.136 %>%
filter(month == "Aug") %>%
mutate(lag.sjt = lag(log.seed),
lag.N = lag(N),
lag.R = lag.rat.mna) %>%
select(-var) %>%
droplevels()
out.dat2 <- out.full.136 %>%
filter(month == "Aug") %>%
mutate(lag.sjt = lag(log.seed),
lag.N = lag(N),
lag.R = lag.rat.mna) %>%
group_by(Control, Valley, month) %>%
summarise(
M.seed = mean(lag.sjt, na.rm = TRUE),
M.dens = mean(lag.N, na.rm = TRUE),
M.rat = mean(lag.R, na.rm = TRUE),
MAX.rat = max(lag.R, na.rm = TRUE),
MAX.seed = max(lag.sjt, na.rm = TRUE),
MAX.dens = max(lag.N, na.rm = TRUE),
MAX.r = max(mean.r, na.rm = TRUE),
min.seed = 0,
min.dens = min(lag.N, na.rm = TRUE),
min.rat = 0,
min.r = min(mean.r, na.rm = TRUE)) %>%
ungroup()
# #merge two datasets
dens.plots <- left_join(out.dat2, out.para1, by = c("Control", "Valley", "month"))
# predict estimates for seed lines
# seed.plot1 <- seed.plots %>%
# mutate(pred.mean = b0 + (b.seed * M.seed) + (b.dens*M.dens) + (b.rat*M.rat),
# pred.min = b0 + (b.seed * min.seed) + (b.dens*min.dens) + (b.rat*min.rat),
# pred.max = b0 + (b.seed * MAX.seed) + (b.dens*MAX.dens) + (b.rat*MAX.rat))
dens.plot1 <- dens.plots %>%
mutate(pred.mean = Intercept + (Seed * M.seed) + (Density*M.dens) + (Rats*M.rat),
pred.min = Intercept + (Seed * M.seed) + (Density*M.dens) + (Rats*min.rat),
pred.max = Intercept + (Seed * M.seed) + (Density*M.dens) + (Rats*MAX.rat))
# # r2
# # plot(pred~mean.r, data = seed.Aug.plot1)
#
#
# # data in tidyverse for ggplot2
out.dens2 <- dens.plot1 %>%
gather(key = pred.fact, value = mean.r, pred.min:pred.max) %>%
mutate(lag.R = ifelse(pred.fact == "pred.min", min.rat, MAX.rat)) %>%
select(Valley, Control, mean.r, lag.R, month, pred.fact) %>%
mutate(lag.R = ifelse(lag.R>0, lag.R, 0.1),
treat = paste(Valley,Control))
## ------------------------------------------------------------------------
# data ----------------------
pC.plot.3 <- out.full.136 %>%
filter(month == "Aug")
out.dat1 <- out.full.136 %>%
filter(month == "Aug") %>%
mutate(lag.sjt = lag(log.seed),
lag.N = lag(N),
lag.R = lag.rat.mna) %>%
select(-var) %>%
droplevels()
ggplot(out.dat1, aes(y = mean.r, x = lag.R)) +
geom_errorbar(aes(ymin = lcl.r, ymax = ucl.r), lwd = 0.75, alpha = 0.2, position=position_dodge(width=30), width = 0) +
geom_point(aes(colour = Valley,shape = Valley, fill = Control),
stroke = 1.5, size = 2, alpha = 0.7) +
# ggplot(out.seed.Aug2, aes(y = mean.r, x = lag.sjt)) +
geom_line(data = out.dens2, aes(y = mean.r, x = lag.R, group = treat),size = 0.75, alpha = 0.7) +
geom_point(data = out.dens2, aes(y = mean.r, x = lag.R, shape = Valley, fill = Control, group = treat), size = 5) +
scale_color_manual(name = "Stoat Control",
values = c("white", "black", "white")) +
scale_shape_manual(name = "Ecosystem",
values = c(24, 21)) +
# scale_size_manual(name = "Rat Control", values = c(2.5, 3, 2.5)) +
scale_fill_manual(
name = "Stoat Control",
values = c("cornflowerblue", "darkorange", "cornflowerblue")
) +
# Remove fill legend and replace the fill legend using the newly created size
guides(
col = "none",
size = guide_legend(override.aes = list(
shape = c(15,0),alpha = 1
)),
shape = guide_legend(override.aes = list(
shape = c(24, 21), size = 4
)),
fill = guide_legend(override.aes = list(
col = c("cornflowerblue", "darkorange"),shape = c("square"),
size = 4
))
) +
#
# # scale_colour_manual(name = "Stoat control",
# # labels = c("E-", "H+", "H-"),
# # values = c("black","black", "black")) +
# # scale_shape_manual(name = "Valley",
# # labels = c("E", "H"),
# # values = c(25,21)) +
# # scale_fill_manual(name = "Stoat control",
# # labels = c("E-", "H+", "H-"),
# # values = c("white","black", "white")) +
# xlab(expression(paste("Intake"," ", "Rate"," ","(",italic(S[jt]),")" ))) +
# xlab(expression(paste("Mouse"," ", "Density"," ","(",italic(N[jt]),")" ))) +
# xlab(expression(atop(paste("Minimum"," ", "number"," "),paste("of", " ", "rats"," ","(",italic(R[jt]),")"))) )+
xlab(expression(atop(paste("Minimum"," ", "number"," "),paste("of", " ", "rats"," ","(",italic(R[jt]),")"))) )+
ylab(expression(atop(paste("Rate"," ", "of"," ",
"increase"),paste(" ", "of"," ",
"mice"," ","(",italic(r[jt]),")"))) ) +
# scale_y_continuous(expand = c(0,0.01),breaks = seq(-4,4,1)) +
theme_tufte() +
theme_bw() +
theme(strip.background = element_blank(),
strip.text.y = element_blank(),
plot.title = element_text(hjust = 0, size=24, family = "Times", color="black", margin = margin(t = 10, b = 10)),
plot.subtitle=element_text(size=16, face="italic", color="black"),
legend.position = "none",
legend.key = element_blank(),
legend.background = element_rect(fill="white", size=1),
legend.key.size=unit(1,"cm"),
legend.text = element_text(colour = "black", size =16, family = "Times"),
legend.title = element_text(colour = "black", size =16, family = "Times"),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.spacing = unit(2, "lines"),
panel.border = element_blank(),
axis.title.y = element_text(colour = "black",size =20, family = "Times", angle = 90),
axis.title.x = element_text(colour = "black", size =20, family = "Times"),
axis.text.y=element_text(colour = "black",size = 20, family = "Times"),
axis.text.x = element_text(colour = "black", size =20, family = "Times"),
axis.ticks.x = element_line(size = 1),
axis.ticks.y = element_line(size = 1),
axis.line.x = element_line(size = 1),
axis.line.y = element_line(size = 1),
strip.text = element_text(face="bold",colour = "black",size =14, family = "Times"))
# pd.plot.Aug
## ------------------------------------------------------------------------
# data for lines ----------------------------------------------------------
# Nov - rats
#Nov filtered (parameters)
# flip dataset
para.plot.dat1 <- para.plot.dat %>%
filter(month == "Nov")
out.para1 <- para.plot.dat %>%
filter(month == "Nov") %>%
select(mean.b, Control, Valley, para, month) %>%
droplevels() %>%
spread(key = para, value = mean.b)
# for each group I need to ....
#Nov filtered (data)
out.dat1 <- out.full.136 %>%
filter(month == "Nov") %>%
mutate(lag.sjt = lag(log.seed),
lag.N = lag(N),
lag.R = lag.rat.mna) %>%
select(-var) %>%
droplevels()
out.dat2 <- out.full.136 %>%
filter(month == "Nov") %>%
mutate(lag.sjt = lag(log.seed),
lag.N = lag(N),
lag.R = lag.rat.mna) %>%
group_by(Control, Valley, month) %>%
summarise(
M.seed = mean(lag.sjt, na.rm = TRUE),
M.dens = mean(lag.N, na.rm = TRUE),
M.rat = mean(lag.R, na.rm = TRUE),
MAX.rat = max(lag.R, na.rm = TRUE),
MAX.seed = max(lag.sjt, na.rm = TRUE),
MAX.dens = max(lag.N, na.rm = TRUE),
MAX.r = max(mean.r, na.rm = TRUE),
min.seed = 0,
min.dens = min(lag.N, na.rm = TRUE),
min.rat = 0,
min.r = min(mean.r, na.rm = TRUE)) %>%
ungroup()
# #merge two datasets
dens.plots <- left_join(out.dat2, out.para1, by = c("Control", "Valley", "month"))
# predict estimates for seed lines
# seed.plot1 <- seed.plots %>%
# mutate(pred.mean = b0 + (b.seed * M.seed) + (b.dens*M.dens) + (b.rat*M.rat),
# pred.min = b0 + (b.seed * min.seed) + (b.dens*min.dens) + (b.rat*min.rat),
# pred.max = b0 + (b.seed * MAX.seed) + (b.dens*MAX.dens) + (b.rat*MAX.rat))
dens.plot1 <- dens.plots %>%
mutate(pred.mean = Intercept + (Seed * M.seed) + (Density*M.dens) + (Rats*M.rat),
pred.min = Intercept + (Seed * M.seed) + (Density*M.dens) + (Rats*min.rat),
pred.max = Intercept + (Seed * M.seed) + (Density*M.dens) + (Rats*MAX.rat))
# # r2
# # plot(pred~mean.r, data = seed.Nov.plot1)
#
#
# # data in tidyverse for ggplot2
out.dens2 <- dens.plot1 %>%
gather(key = pred.fact, value = mean.r, pred.min:pred.max) %>%
mutate(lag.R = ifelse(pred.fact == "pred.min", min.rat, MAX.rat)) %>%
select(Valley, Control, mean.r, lag.R, month, pred.fact) %>%
mutate(lag.R = ifelse(lag.R>0, lag.R, 0.1),
treat = paste(Valley,Control))
## ------------------------------------------------------------------------
# data ----------------------
pC.plot.3 <- out.full.136 %>%
filter(month == "Nov")
out.dat1 <- out.full.136 %>%
filter(month == "Nov") %>%
mutate(lag.sjt = lag(log.seed),
lag.N = lag(N),
lag.R = lag.rat.mna) %>%
select(-var) %>%
droplevels()
ggplot(out.dat1, aes(y = mean.r, x = lag.R)) +
geom_errorbar(aes(ymin = lcl.r, ymax = ucl.r), lwd = 0.75, alpha = 0.2, position=position_dodge(width=30), width = 0) +
geom_point(aes(colour = Valley,shape = Valley, fill = Control),
stroke = 1.5, size = 2, alpha = 0.7) +
# ggplot(out.seed.Nov2, aes(y = mean.r, x = lag.sjt)) +
geom_line(data = out.dens2, aes(y = mean.r, x = lag.R, group = treat),size = 0.75, alpha = 0.7) +
geom_point(data = out.dens2, aes(y = mean.r, x = lag.R, shape = Valley, fill = Control, group = treat), size = 5) +
scale_color_manual(name = "Stoat Control",
values = c("white", "black", "white")) +
scale_shape_manual(name = "Ecosystem",
values = c(24, 21)) +
# scale_size_manual(name = "Rat Control", values = c(2.5, 3, 2.5)) +
scale_fill_manual(
name = "Stoat Control",
values = c("cornflowerblue", "darkorange", "cornflowerblue")
) +
# Remove fill legend and replace the fill legend using the newly created size
guides(
col = "none",
size = guide_legend(override.aes = list(
shape = c(15,0),alpha = 1
)),
shape = guide_legend(override.aes = list(
shape = c(24, 21), size = 4
)),
fill = guide_legend(override.aes = list(
col = c("cornflowerblue", "darkorange"),shape = c("square"),
size = 4
))
) +
#
# # scale_colour_manual(name = "Stoat control",
# # labels = c("E-", "H+", "H-"),
# # values = c("black","black", "black")) +
# # scale_shape_manual(name = "Valley",
# # labels = c("E", "H"),
# # values = c(25,21)) +
# # scale_fill_manual(name = "Stoat control",
# # labels = c("E-", "H+", "H-"),
# # values = c("white","black", "white")) +
# xlab(expression(paste("Intake"," ", "Rate"," ","(",italic(S[jt]),")" ))) +
# xlab(expression(paste("Mouse"," ", "Density"," ","(",italic(N[jt]),")" ))) +
xlab(expression(atop(paste("Minimum"," ", "number"," "),paste("of", " ", "rats"," ","(",italic(R[jt]),")"))) ) +
ylab(expression(atop(paste("Rate"," ", "of"," ",
"increase"),paste(" ", "of"," ",
"mice"," ","(",italic(r[jt]),")"))) ) +
# scale_y_continuous(expand = c(0,0.01),breaks = seq(-4,4,1)) +
theme_tufte() +
theme_bw() +
theme(strip.background = element_blank(),
strip.text.y = element_blank(),
plot.title = element_text(hjust = 0, size=24, family = "Times", color="black", margin = margin(t = 10, b = 10)),
plot.subtitle=element_text(size=16, face="italic", color="black"),
legend.position = "none",
legend.key = element_blank(),
legend.background = element_rect(fill="white", size=1),
legend.key.size=unit(1,"cm"),
legend.text = element_text(colour = "black", size =16, family = "Times"),
legend.title = element_text(colour = "black", size =16, family = "Times"),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.spacing = unit(2, "lines"),
panel.border = element_blank(),
axis.title.y = element_text(colour = "black",size =20, family = "Times", angle = 90),
axis.title.x = element_text(colour = "black", size =20, family = "Times"),
axis.text.y=element_text(colour = "black",size = 20, family = "Times"),
axis.text.x = element_text(colour = "black", size =20, family = "Times"),
axis.ticks.x = element_line(size = 1),
axis.ticks.y = element_line(size = 1),
axis.line.x = element_line(size = 1),
axis.line.y = element_line(size = 1),
strip.text = element_text(face="bold",colour = "black",size =14, family = "Times"))
# pd.plot.Nov
## ------------------------------------------------------------------------
para.rats <- para.plot.erors %>%
filter(para == "b.rat") %>%
mutate(month = factor(month, levels = c("Feb", "May", "Aug", "Nov"), labels = c("February", "May", "August", "November")))
para.plot.rat <- ggplot(para.rats, aes(y = mean.b, x = month, col = Control, shape = Valley, fill = Control)) +
geom_errorbar(aes(ymin = lcl.b, ymax = ucl.b), lwd = 0.75, alpha = 1, width = 0.1, position =position_dodge(width = 1)) +
geom_abline(intercept = 0, slope = 0) +
geom_point(size =4, alpha = 0.7, position = position_dodge(width = 1)) +
# facet_wrap(month~para, scales = "free") +
facet_wrap(~month, scales = "free") +
# scale_y_continuous(limits = c(-1,1)) +
scale_color_manual(name = "Stoat Control",
values = c("cornflowerblue", "darkorange", "cornflowerblue")) +
scale_shape_manual(name = "Ecosystem",
values = c(24, 21)) +
scale_size_manual(name = "Rat Control", values = c(2.5, 3, 2.5)) +
scale_fill_manual(name = "Stoat Control",
values = c("cornflowerblue", "darkorange", "cornflowerblue")) +
# Remove fill legend and replace the fill legend using the newly created size
guides(
col = "none",
size = guide_legend(override.aes = list(
shape = c(15,0),alpha = 1
)),
shape = guide_legend(override.aes = list(
shape = c(24, 21), size = 4
)),
fill = guide_legend(override.aes = list(
col = c("cornflowerblue", "darkorange"),shape = c("square"),
size = 4
))
) +
# xlab(expression(paste("Intake"," ", "Rate"," ","(",italic(S[jt]),")" ))) +
xlab("") +
# xlab(expression(atop(paste("Minimum"," ", "number"," "),paste("of", " ", "rats"," ","(",italic(R[jt]),")"))) )+
# xlab(expression(atop(paste("Minimum"," ", "number"," "),paste("of", " ", "rats"," ","(",italic(R[jt]),")"))) )+
ylab(expression(atop(paste("Rate"," ", "of"," ",
"increase"),paste(" ", "of"," ",
"mice"," ","(",italic(r[jt]),")"))) ) +
# scale_y_continuous(expand = c(0,0.01),breaks = seq(-4,4,1)) +
theme_tufte() +
theme_bw() +
theme(strip.background = element_blank(),
strip.text.y = element_blank(),
plot.title = element_blank(),
plot.subtitle= element_blank(),
legend.position = "none",
legend.key = element_blank(),
legend.background = element_rect(fill="white", size=1),
legend.key.size=unit(1,"cm"),
legend.text = element_text(colour = "black", size =16, family = "Times"),
legend.title = element_text(colour = "black", size =16, family = "Times"),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.spacing = unit(2, "lines"),
panel.border = element_blank(),
axis.title.y = element_text(colour = "black",size =14, family = "Times", angle = 90),
axis.title.x = element_text(colour = "black", size =14, family = "Times"),
axis.text.y=element_text(colour = "black",size = 14, family = "Times"),
axis.text.x = element_text(colour = "black", size =14, family = "Times"),
axis.ticks.x = element_blank(),
axis.ticks.y = element_line(size = 1),
axis.line.x = element_blank(),
axis.line.y = element_line(size = 1),
strip.text = element_blank())
para.plot.rat
## ----pc-seed-plot--------------------------------------------------------
pd.plot.Aug
# Save plot
# export plot for example vignette
png("./figs/fig-5-1.png")
pd.plot.Aug
dev.off()
## ------------------------------------------------------------------------
knitr::include_graphics(c("./figs/fig-5-1.png"), dpi = 400)
## ----pd-dens-plot--------------------------------------------------------
pd.plot.feb
# Save plot
# export plot for example vignette
png("./figs/fig-6-1.png")
pd.plot.feb
dev.off()
## ------------------------------------------------------------------------
knitr::include_graphics(c("./figs/fig-6-1.png"))
## ----rat-plot------------------------------------------------------------
rat.plot.all <- ggplot(out.dat1, aes(y = mean.r, x = lag.R)) +
geom_errorbar(aes(ymin = lcl.r, ymax = ucl.r), lwd = 0.75, alpha = 0.2, position=position_dodge(width=30), width = 0) +
geom_point(aes(colour = Control,shape = Valley, fill = Control),
stroke = 1.5, size = 2, alpha = 0.7) +
geom_line(data = out.dens2, aes(y = mean.r, x = lag.R, group = treat),size = 0.75, alpha = 0.7) +
geom_point(data = out.dens2, aes(y = mean.r, x = lag.R, shape = Valley, fill = Control, group = treat), size = 5) +
scale_color_manual(name = "Stoat Control",
values = c("white", "black", "white")) +
scale_shape_manual(name = "Ecosystem",
values = c(24, 21)) +
scale_size_manual(name = "Rat Control", values = c(2.5, 3, 2.5)) +
scale_fill_manual(name = "Stoat Control",
values = c("cornflowerblue", "darkorange", "cornflowerblue")) +
# Remove fill legend and replace the fill legend using the newly created size
guides(
col = "none",
size = guide_legend(override.aes = list(
shape = c(15,0),alpha = 1
)),
shape = guide_legend(override.aes = list(
shape = c(24, 21), size = 4
)),
fill = guide_legend(override.aes = list(
col = c("cornflowerblue", "darkorange"),shape = c("square"),
size = 4
))
) +
# xlab(expression(paste("Mouse"," ", "Density"," ","(",italic(N[jt]),")" ))) +
# xlab(expression(atop(paste("Minimum"," ", "number"," "),paste("of", " ", "rats"," ","(",italic(R[jt]),")"))) )+
xlab(expression(atop(paste("Minimum"," ", "number"," "),paste("of", " ", "rats"," ","(",italic(R[jt]),")"))) )+
ylab(expression(atop(paste("Rate"," ", "of"," ",
"increase"),paste(" ", "of"," ",
"mice"," ","(",italic(r[jt]),")"))) ) +
# scale_y_continuous(expand = c(0,0.01),breaks = seq(-4,4,1)) +
theme_tufte() +
theme_bw() +
theme(strip.background = element_blank(),
strip.text.y = element_blank(),
plot.title = element_text(hjust = 0, size=24, family = "Times", color="black", margin = margin(t = 10, b = 10)),
plot.subtitle=element_text(size=16, face="italic", color="black"),
legend.position = "none",
legend.key = element_blank(),
legend.background = element_rect(fill="white", size=1),
legend.key.size=unit(1,"cm"),
legend.text = element_text(colour = "black", size =16, family = "Times"),
legend.title = element_text(colour = "black", size =16, family = "Times"),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.spacing = unit(2, "lines"),
panel.border = element_blank(),
axis.title.y = element_text(colour = "black",size =20, family = "Times", angle = 90),
axis.title.x = element_text(colour = "black", size =20, family = "Times"),
axis.text.y=element_text(colour = "black",size = 20, family = "Times"),
axis.text.x = element_text(colour = "black", size =20, family = "Times"),
axis.ticks.x = element_line(size = 1),
axis.ticks.y = element_line(size = 1),
axis.line.x = element_line(size = 1),
axis.line.y = element_line(size = 1),
strip.text = element_text(face="bold",colour = "black",size =14, family = "Times"))
rat.plot.all
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.