context("model-persistence")
source("utils.R")
test_succeeds("model can be saved and loaded", {
if (!keras:::have_h5py())
skip("h5py not available for testing")
model <- define_and_compile_model()
tmp <- tempfile("model", fileext = ".hdf5")
save_model_hdf5(model, tmp)
model <- load_model_hdf5(tmp)
})
test_succeeds("model with custom loss and metrics can be saved and loaded", {
if (!keras:::have_h5py())
skip("h5py not available for testing")
model <- define_model()
metric_mean_pred <- custom_metric("mean_pred", function(y_true, y_pred) {
k_mean(y_pred)
})
custom_loss <- function(y_pred, y_true) {
loss_categorical_crossentropy(y_pred, y_true)
}
model %>% compile(
loss = custom_loss,
optimizer = optimizer_nadam(),
metrics = metric_mean_pred
)
tmp <- tempfile("model", fileext = ".hdf5")
save_model_hdf5(model, tmp)
model <- load_model_hdf5(tmp, custom_objects = c(mean_pred = metric_mean_pred,
custom_loss = custom_loss))
# generate dummy training data
data <- matrix(rexp(1000*784), nrow = 1000, ncol = 784)
labels <- matrix(round(runif(1000*10, min = 0, max = 9)), nrow = 1000, ncol = 10)
model %>% fit(data, labels, epochs = 2, verbose = 0)
})
test_succeeds("model weights can be saved and loaded", {
if (!keras:::have_h5py())
skip("h5py not available for testing")
model <- define_and_compile_model()
tmp <- tempfile("model", fileext = ".hdf5")
save_model_weights_hdf5(model, tmp)
load_model_weights_hdf5(model, tmp)
})
test_succeeds("model can be saved and loaded from json", {
model <- define_model()
json <- model_to_json(model)
model_from <- model_from_json(json)
expect_equal(json, model_to_json(model_from))
})
test_succeeds("model can be saved and loaded from yaml", {
if (!keras:::have_pyyaml())
skip("yaml not available for testing")
model <- define_model()
yaml <- model_to_yaml(model)
model_from <- model_from_yaml(yaml)
expect_equal(yaml, model_to_yaml(model_from))
})
test_succeeds("model can be saved and loaded from R 'raw' object", {
if (!keras:::have_h5py())
skip("h5py not available for testing")
model <- define_and_compile_model()
mdl_raw <- serialize_model(model)
model <- unserialize_model(mdl_raw)
})
test_succeeds("saved models/weights are mirrored in the run_dir", {
run <- tfruns::training_run("train.R", echo = FALSE)
run_dir <- run$run_dir
expect_true(file.exists(file.path(run_dir, "model.h5")))
expect_true(file.exists(file.path(run_dir, "weights", "weights.h5")))
})
test_succeeds("callback output is redirected to run_dir", {
run <- tfruns::training_run("train.R", echo = FALSE)
run_dir <- run$run_dir
if (is_backend("tensorflow"))
expect_true(file_test("-d", file.path(run_dir, "tflogs")))
expect_true(file.exists(file.path(run_dir, "cbk_checkpoint.h5")))
expect_true(file.exists(file.path(run_dir, "cbk_history.csv")))
})
test_succeeds("model can be exported to TensorFlow", {
if (!is_backend("tensorflow")) skip("not a tensorflow backend")
model <- define_and_compile_model()
model_dir <- tempfile()
export <- function() tensorflow::export_savedmodel(model, model_dir)
export()
model_files <- dir(model_dir, recursive = TRUE)
expect_true(any(grepl("saved_model\\.pb", model_files)))
})
test_succeeds("model can be exported to saved model format", {
if (!is_backend("tensorflow")) skip("not a tensorflow backend")
if (!tensorflow::tf_version() >= "1.14") skip("Needs TF >= 1.14")
if (tensorflow::tf_version() > "2.0") skip("Is deprecated in TF 2.1")
model <- define_and_compile_model()
data <- matrix(rexp(1000*784), nrow = 1000, ncol = 784)
labels <- matrix(round(runif(1000*10, min = 0, max = 9)), nrow = 1000, ncol = 10)
model %>% fit(data, labels, epochs = 2, verbose = 0)
model_dir <- tempfile()
dir.create(model_dir)
if (tensorflow::tf_version() == "2.0") {
expect_warning({
model_to_saved_model(model, model_dir)
loaded <- model_from_saved_model(model_dir)
})
} else {
model_to_saved_model(model, model_dir)
loaded <- model_from_saved_model(model_dir)
}
expect_equal(
predict(model, matrix(rep(1, 784), nrow = 1)),
predict(loaded, matrix(rep(1, 784), nrow = 1))
)
})
test_succeeds("model can be exported to saved model format using save_model_tf", {
if (!is_backend("tensorflow")) skip("not a tensorflow backend")
if (!tensorflow::tf_version() >= "2.0.0") skip("Needs TF >= 2.0")
model <- define_and_compile_model()
model_dir <- tempfile()
s <- save_model_tf(model, model_dir)
loaded <- load_model_tf(model_dir)
expect_equal(
predict(model, matrix(rep(1, 784), nrow = 1)),
predict(loaded, matrix(rep(1, 784), nrow = 1))
)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.