# Test sfJSDM.R -------------------------------------------------------
# NNGP --------------------------------------------------------------------
skip_on_cran()
# Intercept Only ----------------------------------------------------------
set.seed(833)
J.x <- 8
J.y <- 8
J <- J.x * J.y
n.rep<- sample(2:4, size = J, replace = TRUE)
N <- 6
# Community-level covariate effects
# Occurrence
beta.mean <- c(0.2)
p.occ <- length(beta.mean)
tau.sq.beta <- c(0.6)
# Detection
alpha.mean <- c(0)
tau.sq.alpha <- c(1)
p.det <- length(alpha.mean)
# Random effects
psi.RE <- list()
p.RE <- list()
# Draw species-level effects from community means.
beta <- matrix(NA, nrow = N, ncol = p.occ)
alpha <- matrix(NA, nrow = N, ncol = p.det)
for (i in 1:p.occ) {
beta[, i] <- rnorm(N, beta.mean[i], sqrt(tau.sq.beta[i]))
}
for (i in 1:p.det) {
alpha[, i] <- rnorm(N, alpha.mean[i], sqrt(tau.sq.alpha[i]))
}
alpha.true <- alpha
n.factors <- 3
phi <- rep(3 / .7, n.factors)
sigma.sq <- rep(2, n.factors)
nu <- rep(2, n.factors)
dat <- simMsOcc(J.x = J.x, J.y = J.y, n.rep = n.rep, N = N, beta = beta, alpha = alpha,
psi.RE = psi.RE, p.RE = p.RE, sp = TRUE, sigma.sq = sigma.sq,
phi = phi, nu = nu, cov.model = 'matern', factor.model = TRUE,
n.factors = n.factors)
pred.indx <- sample(1:J, round(J * .25), replace = FALSE)
y <- dat$y[, -pred.indx, , drop = FALSE]
# Occupancy covariates
X <- dat$X[-pred.indx, , drop = FALSE]
coords <- as.matrix(dat$coords[-pred.indx, , drop = FALSE])
# Prediction covariates
X.0 <- dat$X[pred.indx, , drop = FALSE]
coords.0 <- as.matrix(dat$coords[pred.indx, , drop = FALSE])
# Detection covariates
X.p <- dat$X.p[-pred.indx, , , drop = FALSE]
y <- apply(y, c(1, 2), max, na.rm = TRUE)
data.list <- list(y = y, coords = coords)
# Priors
prior.list <- list(beta.comm.normal = list(mean = 0, var = 2.72),
tau.sq.beta.ig = list(a = 0.1, b = 0.1),
nu.unif = list(0.5, 2.5))
# Starting values
inits.list <- list(beta.comm = 0,
beta = 0,
fix = TRUE,
tau.sq.beta = 1)
# Tuning
tuning.list <- list(phi = 1, nu = 0.25)
batch.length <- 25
n.batch <- 40
n.report <- 100
formula <- ~ 1
out <- sfJSDM(formula = formula,
data = data.list,
inits = inits.list,
n.batch = n.batch,
batch.length = batch.length,
accept.rate = 0.43,
priors = prior.list,
cov.model = "matern",
tuning = tuning.list,
n.factors = 3,
n.omp.threads = 1,
verbose = FALSE,
NNGP = TRUE,
n.neighbors = 5,
search.type = 'cb',
n.report = 10,
n.burn = 400,
n.thin = 2,
n.chains = 2,
k.fold = 2,
k.fold.threads = 1)
# To make sure it worked --------------
test_that("out is of class sfJSDM", {
expect_s3_class(out, "sfJSDM")
})
# Check summary -----------------------
test_that("summary works", {
expect_output(summary(out))
})
# Check cross-validation --------------
test_that("cross-validation works", {
out.k.fold <- sfJSDM(formula = formula,
data = data.list,
inits = inits.list,
n.batch = n.batch,
batch.length = batch.length,
accept.rate = 0.43,
priors = prior.list,
cov.model = "matern",
tuning = tuning.list,
n.factors = 3,
n.omp.threads = 1,
verbose = FALSE,
NNGP = TRUE,
n.neighbors = 5,
search.type = 'cb',
n.report = 10,
n.burn = 400,
n.thin = 2,
n.chains = 2,
k.fold = 2,
k.fold.only = TRUE,
k.fold.threads = 1)
expect_equal(length(out.k.fold$k.fold.deviance), N)
expect_type(out.k.fold$k.fold.deviance, "double")
expect_equal(sum(out.k.fold$k.fold.deviance < 0), 0)
})
# Check random effects ----------------
test_that("random effects are correct", {
expect_equal(out$psiRE, FALSE)
})
# Check output data output is correct -
test_that("out$y == y", {
expect_equal(out$y, y)
})
# Check default values ----------------
test_that("default priors, inits, burn, thin work", {
out <- sfJSDM(formula = formula,
data = data.list,
n.batch = n.batch,
batch.length = batch.length,
accept.rate = 0.43,
cov.model = "exponential",
tuning = tuning.list,
n.factors = 3,
NNGP = TRUE,
verbose = FALSE,
n.neighbors = 5,
n.chains = 1)
expect_s3_class(out, "sfJSDM")
})
test_that("all correlation functions work", {
out <- sfJSDM(formula = formula,
data = data.list,
inits = inits.list,
n.batch = n.batch,
batch.length = batch.length,
accept.rate = 0.43,
priors = prior.list,
cov.model = "gaussian",
tuning = list(phi = 0.3),
n.factors = 3,
n.omp.threads = 1,
verbose = FALSE,
NNGP = TRUE,
n.neighbors = 5,
search.type = 'cb',
n.report = 10,
n.burn = 500,
n.thin = 1,
n.chains = 1)
expect_s3_class(out, "sfJSDM")
out <- sfJSDM(formula = formula,
data = data.list,
inits = inits.list,
n.batch = n.batch,
batch.length = batch.length,
accept.rate = 0.43,
priors = prior.list,
cov.model = "spherical",
tuning = list(phi = 0.3),
n.factors = 3,
n.omp.threads = 1,
verbose = FALSE,
NNGP = TRUE,
n.neighbors = 5,
search.type = 'cb',
n.report = 10,
n.burn = 500,
n.thin = 1,
n.chains = 1)
expect_s3_class(out, "sfJSDM")
out <- sfJSDM(formula = formula,
data = data.list,
inits = inits.list,
n.batch = n.batch,
batch.length = batch.length,
accept.rate = 0.43,
priors = list(nu.unif = list(0.4, 3)),
cov.model = "matern",
tuning = list(phi = 0.3, nu = 0.2),
n.factors = 3,
n.omp.threads = 1,
verbose = FALSE,
NNGP = TRUE,
n.neighbors = 5,
search.type = 'cb',
n.report = 10,
n.burn = 500,
n.thin = 1,
n.chains = 1)
expect_s3_class(out, "sfJSDM")
})
test_that("verbose prints to the screen", {
expect_output(sfJSDM(formula = formula,
data = data.list,
inits = inits.list,
n.batch = n.batch,
batch.length = batch.length,
accept.rate = 0.43,
priors = prior.list,
cov.model = "exponential",
tuning = tuning.list,
n.factors = 3,
n.omp.threads = 1,
verbose = TRUE,
NNGP = TRUE,
n.neighbors = 5,
search.type = 'cb',
n.report = 10,
n.burn = 500,
n.thin = 1,
n.chains = 1))
})
# Check waicOcc -----------------------
test_that("waicOCC works for sfJSDM", {
# as.vector gets rid of names
waic.out <- as.vector(waicOcc(out))
expect_equal(length(waic.out), 3)
expect_equal(waic.out[3], -2 * (waic.out[1] - waic.out[2]))
})
test_that("fitted works for sfJSDM", {
fitted.out <- fitted(out)
expect_equal(length(fitted.out), 2)
expect_equal(class(fitted.out$z.samples), "array")
expect_equal(class(fitted.out$psi.samples), "array")
expect_equal(dim(fitted.out$z.samples), dim(fitted.out$psi.samples))
})
test_that("predict works for sfJSDM", {
n.post.samples <- out$n.post * out$n.chains
pred.out <- predict(out, X.0, coords.0, verbose = FALSE)
expect_type(pred.out, "list")
expect_equal(dim(pred.out$psi.0.samples), c(n.post.samples, N, nrow(X.0)))
expect_equal(dim(pred.out$z.0.samples), c(n.post.samples, N, nrow(X.0)))
})
test_that("posterior predictive checks work for sfJSDM", {
expect_error(ppcOcc(out, 'chi-square', 2))
})
# Covariates --------------------------------------------------------------
J.x <- 8
J.y <- 8
J <- J.x * J.y
n.rep<- sample(2:4, size = J, replace = TRUE)
N <- 6
# Community-level covariate effects
# Occurrence
beta.mean <- c(0.2, 1.3, -0.5)
p.occ <- length(beta.mean)
tau.sq.beta <- c(0.6, 2.4, 3.3)
# Detection
alpha.mean <- c(0)
tau.sq.alpha <- c(1)
p.det <- length(alpha.mean)
# Random effects
psi.RE <- list()
p.RE <- list()
# Draw species-level effects from community means.
beta <- matrix(NA, nrow = N, ncol = p.occ)
alpha <- matrix(NA, nrow = N, ncol = p.det)
for (i in 1:p.occ) {
beta[, i] <- rnorm(N, beta.mean[i], sqrt(tau.sq.beta[i]))
}
for (i in 1:p.det) {
alpha[, i] <- rnorm(N, alpha.mean[i], sqrt(tau.sq.alpha[i]))
}
alpha.true <- alpha
n.factors <- 3
phi <- rep(3 / .7, n.factors)
sigma.sq <- rep(2, n.factors)
nu <- rep(2, n.factors)
dat <- simMsOcc(J.x = J.x, J.y = J.y, n.rep = n.rep, N = N, beta = beta, alpha = alpha,
psi.RE = psi.RE, p.RE = p.RE, sp = TRUE, sigma.sq = sigma.sq,
phi = phi, nu = nu, cov.model = 'matern', factor.model = TRUE,
n.factors = n.factors)
pred.indx <- sample(1:J, round(J * .25), replace = FALSE)
y <- dat$y[, -pred.indx, , drop = FALSE]
# Occupancy covariates
X <- dat$X[-pred.indx, , drop = FALSE]
coords <- as.matrix(dat$coords[-pred.indx, , drop = FALSE])
# Prediction covariates
X.0 <- dat$X[pred.indx, , drop = FALSE]
coords.0 <- as.matrix(dat$coords[pred.indx, , drop = FALSE])
# Detection covariates
X.p <- dat$X.p[-pred.indx, , , drop = FALSE]
y <- apply(y, c(1, 2), max, na.rm = TRUE)
occ.covs <- X
colnames(occ.covs) <- c('int', 'occ.cov.1', 'occ.cov.2')
data.list <- list(y = y, coords = coords, covs = occ.covs)
# Priors
prior.list <- list(beta.comm.normal = list(mean = 0, var = 2.72),
tau.sq.beta.ig = list(a = 0.1, b = 0.1),
nu.unif = list(0.5, 2.5))
# Starting values
inits.list <- list(beta.comm = 0,
beta = 0,
tau.sq.beta = 1)
# Tuning
tuning.list <- list(phi = 1, nu = 0.25)
batch.length <- 25
n.batch <- 40
n.report <- 100
formula <- ~ occ.cov.1 + occ.cov.2
out <- sfJSDM(formula = formula,
data = data.list,
inits = inits.list,
n.batch = n.batch,
batch.length = batch.length,
accept.rate = 0.43,
priors = prior.list,
cov.model = "matern",
tuning = tuning.list,
n.factors = 3,
n.omp.threads = 1,
verbose = FALSE,
NNGP = TRUE,
n.neighbors = 5,
search.type = 'cb',
n.report = 10,
n.burn = 400,
n.thin = 2,
n.chains = 2,
k.fold = 2,
k.fold.threads = 1)
# To make sure it worked --------------
test_that("out is of class sfJSDM", {
expect_s3_class(out, "sfJSDM")
})
# Check summary -----------------------
test_that("summary works", {
expect_output(summary(out))
})
# Check cross-validation --------------
test_that("cross-validation works", {
expect_equal(length(out$k.fold.deviance), N)
expect_type(out$k.fold.deviance, "double")
expect_equal(sum(out$k.fold.deviance < 0), 0)
})
# Check random effects ----------------
test_that("random effects are correct", {
expect_equal(out$psiRE, FALSE)
})
# Check output data output is correct -
test_that("out$y == y", {
expect_equal(out$y, y)
})
# Check default values ----------------
test_that("default priors, inits, burn, thin work", {
out <- sfJSDM(formula = formula,
data = data.list,
n.batch = n.batch,
batch.length = batch.length,
accept.rate = 0.43,
cov.model = "exponential",
tuning = tuning.list,
n.factors = 3,
NNGP = TRUE,
verbose = FALSE,
n.neighbors = 5,
n.chains = 1)
expect_s3_class(out, "sfJSDM")
})
# Check non-integer n.post -------------
test_that("non-integer n.post", {
expect_error(out <- sfJSDM(formula = formula,
data = data.list,
n.thin = 13,
n.batch = n.batch,
batch.length = batch.length,
accept.rate = 0.43,
n.factors = 3,
n.omp.threads = 1,
verbose = FALSE))
})
test_that("all correlation functions work", {
out <- sfJSDM(formula = formula,
data = data.list,
inits = inits.list,
n.batch = n.batch,
batch.length = batch.length,
accept.rate = 0.43,
priors = prior.list,
cov.model = "gaussian",
tuning = list(phi = 0.3),
n.factors = 3,
n.omp.threads = 1,
verbose = FALSE,
NNGP = TRUE,
n.neighbors = 5,
search.type = 'cb',
n.report = 10,
n.burn = 500,
n.thin = 1,
n.chains = 1)
expect_s3_class(out, "sfJSDM")
out <- sfJSDM(formula = formula,
data = data.list,
inits = inits.list,
n.batch = n.batch,
batch.length = batch.length,
accept.rate = 0.43,
priors = prior.list,
cov.model = "spherical",
tuning = list(phi = 0.3),
n.factors = 3,
n.omp.threads = 1,
verbose = FALSE,
NNGP = TRUE,
n.neighbors = 5,
search.type = 'cb',
n.report = 10,
n.burn = 500,
n.thin = 1,
n.chains = 1)
expect_s3_class(out, "sfJSDM")
out <- sfJSDM(formula = formula,
data = data.list,
inits = inits.list,
n.batch = n.batch,
batch.length = batch.length,
accept.rate = 0.43,
priors = list(nu.unif = list(0.4, 3)),
cov.model = "matern",
tuning = list(phi = 0.3, nu = 0.2),
n.factors = 3,
n.omp.threads = 1,
verbose = FALSE,
NNGP = TRUE,
n.neighbors = 5,
search.type = 'cb',
n.report = 10,
n.burn = 500,
n.thin = 1,
n.chains = 1)
expect_s3_class(out, "sfJSDM")
})
test_that("verbose prints to the screen", {
expect_output(sfJSDM(formula = formula,
data = data.list,
inits = inits.list,
n.batch = n.batch,
batch.length = batch.length,
accept.rate = 0.43,
priors = prior.list,
cov.model = "exponential",
tuning = tuning.list,
n.factors = 3,
n.omp.threads = 1,
verbose = TRUE,
NNGP = TRUE,
n.neighbors = 5,
search.type = 'cb',
n.report = 10,
n.burn = 500,
n.thin = 1,
n.chains = 1))
})
# Check waicOcc -----------------------
test_that("waicOCC works for sfJSDM", {
# as.vector gets rid of names
waic.out <- as.vector(waicOcc(out))
expect_equal(length(waic.out), 3)
expect_equal(waic.out[3], -2 * (waic.out[1] - waic.out[2]))
})
test_that("fitted works for sfJSDM", {
fitted.out <- fitted(out)
expect_equal(length(fitted.out), 2)
expect_equal(class(fitted.out$z.samples), "array")
expect_equal(class(fitted.out$psi.samples), "array")
expect_equal(dim(fitted.out$z.samples), dim(fitted.out$psi.samples))
})
test_that("predict works for sfJSDM", {
n.post.samples <- out$n.post * out$n.chains
X.0 <- cbind(X.0)
colnames(X.0) <- c('int', 'occ.cov.1', 'occ.cov.2')
pred.out <- predict(out, X.0, coords.0, verbose = FALSE)
expect_type(pred.out, "list")
expect_equal(dim(pred.out$psi.0.samples), c(n.post.samples, N, nrow(X.0)))
expect_equal(dim(pred.out$z.0.samples), c(n.post.samples, N, nrow(X.0)))
})
test_that("posterior predictive checks work for sfJSDM", {
expect_error(ppcOcc(out, 'chi-square', 2))
})
# Random intercept --------------------------------------------------------
J.x <- 8
J.y <- 8
J <- J.x * J.y
n.rep<- sample(2:4, size = J, replace = TRUE)
N <- 6
# Community-level covariate effects
# Occurrence
beta.mean <- c(0.2)
p.occ <- length(beta.mean)
tau.sq.beta <- c(0.6)
# Detection
alpha.mean <- c(0)
tau.sq.alpha <- c(1)
p.det <- length(alpha.mean)
# Random effects
psi.RE <- list(levels = c(20),
sigma.sq.psi = c(0.5))
p.RE <- list()
# Draw species-level effects from community means.
beta <- matrix(NA, nrow = N, ncol = p.occ)
alpha <- matrix(NA, nrow = N, ncol = p.det)
for (i in 1:p.occ) {
beta[, i] <- rnorm(N, beta.mean[i], sqrt(tau.sq.beta[i]))
}
for (i in 1:p.det) {
alpha[, i] <- rnorm(N, alpha.mean[i], sqrt(tau.sq.alpha[i]))
}
alpha.true <- alpha
n.factors <- 3
phi <- rep(3 / .7, n.factors)
sigma.sq <- rep(2, n.factors)
nu <- rep(2, n.factors)
dat <- simMsOcc(J.x = J.x, J.y = J.y, n.rep = n.rep, N = N, beta = beta, alpha = alpha,
psi.RE = psi.RE, p.RE = p.RE, sp = TRUE, sigma.sq = sigma.sq,
phi = phi, nu = nu, cov.model = 'matern', factor.model = TRUE,
n.factors = n.factors)
pred.indx <- sample(1:J, round(J * .25), replace = FALSE)
y <- dat$y[, -pred.indx, , drop = FALSE]
# Occupancy covariates
X <- dat$X[-pred.indx, , drop = FALSE]
X.re <- dat$X.re[-pred.indx, , drop = FALSE]
coords <- as.matrix(dat$coords[-pred.indx, , drop = FALSE])
# Prediction covariates
X.0 <- dat$X[pred.indx, , drop = FALSE]
X.re.0 <- dat$X.re[pred.indx, , drop = FALSE]
coords.0 <- as.matrix(dat$coords[pred.indx, , drop = FALSE])
# Detection covariates
X.p <- dat$X.p[-pred.indx, , , drop = FALSE]
y <- apply(y, c(1, 2), max, na.rm = TRUE)
occ.covs <- cbind(X, X.re)
colnames(occ.covs) <- c('int', 'occ.factor.1')
data.list <- list(y = y, coords = coords, covs = occ.covs)
# Priors
prior.list <- list(beta.comm.normal = list(mean = 0, var = 2.72),
tau.sq.beta.ig = list(a = 0.1, b = 0.1),
nu.unif = list(0.5, 2.5))
# Starting values
inits.list <- list(beta.comm = 0,
beta = 0,
tau.sq.beta = 1)
# Tuning
tuning.list <- list(phi = 1, nu = 0.25)
batch.length <- 25
n.batch <- 40
n.report <- 100
formula <- ~ (1 | occ.factor.1)
out <- sfJSDM(formula = formula,
data = data.list,
inits = inits.list,
n.batch = n.batch,
batch.length = batch.length,
accept.rate = 0.43,
priors = prior.list,
cov.model = "matern",
tuning = tuning.list,
n.factors = 3,
n.omp.threads = 1,
verbose = FALSE,
NNGP = TRUE,
n.neighbors = 5,
search.type = 'cb',
n.report = 10,
n.burn = 400,
n.thin = 2,
n.chains = 2,
k.fold = 2,
k.fold.threads = 1)
# To make sure it worked --------------
test_that("out is of class sfJSDM", {
expect_s3_class(out, "sfJSDM")
})
# Check summary -----------------------
test_that("summary works", {
expect_output(summary(out))
})
# Check cross-validation --------------
test_that("cross-validation works", {
expect_equal(length(out$k.fold.deviance), N)
expect_type(out$k.fold.deviance, "double")
expect_equal(sum(out$k.fold.deviance < 0), 0)
})
# Check random effects ----------------
test_that("random effects are correct", {
expect_equal(out$psiRE, TRUE)
})
# Check RE levels ---------------------
test_that("random effect gives error when non-numeric", {
data.list$covs <- as.data.frame(data.list$covs)
data.list$covs$occ.factor.1 <- factor(data.list$covs$occ.factor.1)
expect_error(out <- sfJSDM(formula = formula,
data = data.list,
inits = inits.list,
n.batch = n.batch,
batch.length = batch.length,
n.factors = 3,
accept.rate = 0.43,
priors = prior.list,
cov.model = "matern",
tuning = tuning.list,
n.omp.threads = 1,
verbose = FALSE,
NNGP = TRUE,
n.neighbors = 5,
search.type = 'cb',
n.report = 10,
n.burn = 400,
n.thin = 2,
n.chains = 1))
data.list$covs$occ.factor.1 <- as.character(factor(data.list$covs$occ.factor.1))
expect_error(out <- sfJSDM(formula = formula,
data = data.list,
inits = inits.list,
n.batch = n.batch,
batch.length = batch.length,
n.factors = 3,
accept.rate = 0.43,
priors = prior.list,
cov.model = "matern",
tuning = tuning.list,
n.omp.threads = 1,
verbose = FALSE,
NNGP = TRUE,
n.neighbors = 5,
search.type = 'cb',
n.report = 10,
n.burn = 400,
n.thin = 2,
n.chains = 1))
})
# Check output data output is correct -
test_that("out$y == y", {
expect_equal(out$y, y)
})
# Check default values ----------------
test_that("default priors, inits, burn, thin work", {
out <- sfJSDM(formula = formula,
data = data.list,
n.batch = n.batch,
batch.length = batch.length,
accept.rate = 0.43,
cov.model = "exponential",
tuning = tuning.list,
n.factors = 3,
NNGP = TRUE,
verbose = FALSE,
n.neighbors = 5,
n.chains = 1)
expect_s3_class(out, "sfJSDM")
})
test_that("all correlation functions work", {
out <- sfJSDM(formula = formula,
data = data.list,
inits = inits.list,
n.batch = n.batch,
batch.length = batch.length,
accept.rate = 0.43,
priors = prior.list,
cov.model = "gaussian",
tuning = list(phi = 0.3),
n.factors = 3,
n.omp.threads = 1,
verbose = FALSE,
NNGP = TRUE,
n.neighbors = 5,
search.type = 'cb',
n.report = 10,
n.burn = 500,
n.thin = 1,
n.chains = 1)
expect_s3_class(out, "sfJSDM")
out <- sfJSDM(formula = formula,
data = data.list,
inits = inits.list,
n.batch = n.batch,
batch.length = batch.length,
accept.rate = 0.43,
priors = prior.list,
cov.model = "spherical",
tuning = list(phi = 0.3),
n.factors = 3,
n.omp.threads = 1,
verbose = FALSE,
NNGP = TRUE,
n.neighbors = 5,
search.type = 'cb',
n.report = 10,
n.burn = 500,
n.thin = 1,
n.chains = 1)
expect_s3_class(out, "sfJSDM")
out <- sfJSDM(formula = formula,
data = data.list,
inits = inits.list,
n.batch = n.batch,
batch.length = batch.length,
accept.rate = 0.43,
priors = list(nu.unif = list(0.4, 3)),
cov.model = "matern",
tuning = list(phi = 0.3, nu = 0.2),
n.factors = 3,
n.omp.threads = 1,
verbose = FALSE,
NNGP = TRUE,
n.neighbors = 5,
search.type = 'cb',
n.report = 10,
n.burn = 500,
n.thin = 1,
n.chains = 1)
expect_s3_class(out, "sfJSDM")
})
test_that("verbose prints to the screen", {
expect_output(sfJSDM(formula = formula,
data = data.list,
inits = inits.list,
n.batch = n.batch,
batch.length = batch.length,
accept.rate = 0.43,
priors = prior.list,
cov.model = "exponential",
tuning = tuning.list,
n.factors = 3,
n.omp.threads = 1,
verbose = TRUE,
NNGP = TRUE,
n.neighbors = 5,
search.type = 'cb',
n.report = 10,
n.burn = 500,
n.thin = 1,
n.chains = 1))
})
# Check waicOcc -----------------------
test_that("waicOCC works for sfJSDM", {
# as.vector gets rid of names
waic.out <- as.vector(waicOcc(out))
expect_equal(length(waic.out), 3)
expect_equal(waic.out[3], -2 * (waic.out[1] - waic.out[2]))
})
test_that("fitted works for sfJSDM", {
fitted.out <- fitted(out)
expect_equal(length(fitted.out), 2)
expect_equal(class(fitted.out$z.samples), "array")
expect_equal(class(fitted.out$psi.samples), "array")
expect_equal(dim(fitted.out$z.samples), dim(fitted.out$psi.samples))
})
test_that("predict works for sfJSDM", {
n.post.samples <- out$n.post * out$n.chains
X.0 <- cbind(X.0, X.re.0)
colnames(X.0) <- c('int', 'occ.factor.1')
pred.out <- predict(out, X.0, coords.0, verbose = FALSE)
expect_type(pred.out, "list")
expect_equal(dim(pred.out$psi.0.samples), c(n.post.samples, N, nrow(X.0)))
expect_equal(dim(pred.out$z.0.samples), c(n.post.samples, N, nrow(X.0)))
})
test_that("posterior predictive checks work for sfJSDM", {
expect_error(ppcOcc(out, 'chi-square', 2))
})
# Multiple random intercepts ----------------------------------------------
J.x <- 8
J.y <- 8
J <- J.x * J.y
n.rep<- sample(2:4, size = J, replace = TRUE)
N <- 6
# Community-level covariate effects
# Occurrence
beta.mean <- c(0.2)
p.occ <- length(beta.mean)
tau.sq.beta <- c(0.6)
# Detection
alpha.mean <- c(0)
tau.sq.alpha <- c(1)
p.det <- length(alpha.mean)
# Random effects
psi.RE <- list(levels = c(20, 30),
sigma.sq.psi = c(0.5, 1.5))
p.RE <- list()
# Draw species-level effects from community means.
beta <- matrix(NA, nrow = N, ncol = p.occ)
alpha <- matrix(NA, nrow = N, ncol = p.det)
for (i in 1:p.occ) {
beta[, i] <- rnorm(N, beta.mean[i], sqrt(tau.sq.beta[i]))
}
for (i in 1:p.det) {
alpha[, i] <- rnorm(N, alpha.mean[i], sqrt(tau.sq.alpha[i]))
}
alpha.true <- alpha
n.factors <- 3
phi <- rep(3 / .7, n.factors)
sigma.sq <- rep(2, n.factors)
nu <- rep(2, n.factors)
dat <- simMsOcc(J.x = J.x, J.y = J.y, n.rep = n.rep, N = N, beta = beta, alpha = alpha,
psi.RE = psi.RE, p.RE = p.RE, sp = TRUE, sigma.sq = sigma.sq,
phi = phi, nu = nu, cov.model = 'matern', factor.model = TRUE,
n.factors = n.factors)
pred.indx <- sample(1:J, round(J * .25), replace = FALSE)
y <- dat$y[, -pred.indx, , drop = FALSE]
# Occupancy covariates
X <- dat$X[-pred.indx, , drop = FALSE]
X.re <- dat$X.re[-pred.indx, , drop = FALSE]
coords <- as.matrix(dat$coords[-pred.indx, , drop = FALSE])
# Prediction covariates
X.0 <- dat$X[pred.indx, , drop = FALSE]
X.re.0 <- dat$X.re[pred.indx, , drop = FALSE]
coords.0 <- as.matrix(dat$coords[pred.indx, , drop = FALSE])
# Detection covariates
X.p <- dat$X.p[-pred.indx, , , drop = FALSE]
y <- apply(y, c(1, 2), max, na.rm = TRUE)
occ.covs <- cbind(X, X.re)
colnames(occ.covs) <- c('int', 'occ.factor.1', 'occ.factor.2')
data.list <- list(y = y, coords = coords, covs = occ.covs)
# Priors
prior.list <- list(beta.comm.normal = list(mean = 0, var = 2.72),
tau.sq.beta.ig = list(a = 0.1, b = 0.1),
nu.unif = list(0.5, 2.5))
# Starting values
inits.list <- list(beta.comm = 0,
beta = 0,
tau.sq.beta = 1)
# Tuning
tuning.list <- list(phi = 1, nu = 0.25)
batch.length <- 25
n.batch <- 40
n.report <- 100
formula <- ~ (1 | occ.factor.1) + (1 | occ.factor.2)
out <- sfJSDM(formula = formula,
data = data.list,
inits = inits.list,
n.batch = n.batch,
batch.length = batch.length,
accept.rate = 0.43,
priors = prior.list,
cov.model = "matern",
tuning = tuning.list,
n.factors = 3,
n.omp.threads = 1,
verbose = FALSE,
NNGP = TRUE,
n.neighbors = 5,
search.type = 'cb',
n.report = 10,
n.burn = 400,
n.thin = 2,
n.chains = 2,
k.fold = 2,
k.fold.threads = 1)
# To make sure it worked --------------
test_that("out is of class sfJSDM", {
expect_s3_class(out, "sfJSDM")
})
# Check summary -----------------------
test_that("summary works", {
expect_output(summary(out))
})
# Check cross-validation --------------
test_that("cross-validation works", {
expect_equal(length(out$k.fold.deviance), N)
expect_type(out$k.fold.deviance, "double")
expect_equal(sum(out$k.fold.deviance < 0), 0)
})
# Check random effects ----------------
test_that("random effects are correct", {
expect_equal(out$psiRE, TRUE)
})
# Check RE levels ---------------------
test_that("random effect gives error when non-numeric", {
data.list$covs <- as.data.frame(data.list$covs)
data.list$covs$occ.factor.1 <- factor(data.list$covs$occ.factor.1)
expect_error(out <- sfJSDM(formula = formula,
data = data.list,
inits = inits.list,
n.batch = n.batch,
batch.length = batch.length,
n.factors = 3,
accept.rate = 0.43,
priors = prior.list,
cov.model = "matern",
tuning = tuning.list,
n.omp.threads = 1,
verbose = FALSE,
NNGP = TRUE,
n.neighbors = 5,
search.type = 'cb',
n.report = 10,
n.burn = 400,
n.thin = 2,
n.chains = 1))
data.list$covs$occ.factor.1 <- as.character(factor(data.list$covs$occ.factor.1))
expect_error(out <- sfJSDM(formula = formula,
data = data.list,
inits = inits.list,
n.batch = n.batch,
batch.length = batch.length,
n.factors = 3,
accept.rate = 0.43,
priors = prior.list,
cov.model = "matern",
tuning = tuning.list,
n.omp.threads = 1,
verbose = FALSE,
NNGP = TRUE,
n.neighbors = 5,
search.type = 'cb',
n.report = 10,
n.burn = 400,
n.thin = 2,
n.chains = 1))
})
# Check output data output is correct -
test_that("out$y == y", {
expect_equal(out$y, y)
})
# Check default values ----------------
test_that("default priors, inits, burn, thin work", {
out <- sfJSDM(formula = formula,
data = data.list,
n.batch = n.batch,
batch.length = batch.length,
accept.rate = 0.43,
cov.model = "exponential",
tuning = tuning.list,
n.factors = 3,
NNGP = TRUE,
verbose = FALSE,
n.neighbors = 5,
n.chains = 1)
expect_s3_class(out, "sfJSDM")
})
test_that("all correlation functions work", {
out <- sfJSDM(formula = formula,
data = data.list,
inits = inits.list,
n.batch = n.batch,
batch.length = batch.length,
accept.rate = 0.43,
priors = prior.list,
cov.model = "gaussian",
tuning = list(phi = 0.3),
n.factors = 3,
n.omp.threads = 1,
verbose = FALSE,
NNGP = TRUE,
n.neighbors = 5,
search.type = 'cb',
n.report = 10,
n.burn = 500,
n.thin = 1,
n.chains = 1)
expect_s3_class(out, "sfJSDM")
out <- sfJSDM(formula = formula,
data = data.list,
inits = inits.list,
n.batch = n.batch,
batch.length = batch.length,
accept.rate = 0.43,
priors = prior.list,
cov.model = "spherical",
tuning = list(phi = 0.3),
n.factors = 3,
n.omp.threads = 1,
verbose = FALSE,
NNGP = TRUE,
n.neighbors = 5,
search.type = 'cb',
n.report = 10,
n.burn = 500,
n.thin = 1,
n.chains = 1)
expect_s3_class(out, "sfJSDM")
out <- sfJSDM(formula = formula,
data = data.list,
inits = inits.list,
n.batch = n.batch,
batch.length = batch.length,
accept.rate = 0.43,
priors = list(nu.unif = list(0.4, 3)),
cov.model = "matern",
tuning = list(phi = 0.3, nu = 0.2),
n.factors = 3,
n.omp.threads = 1,
verbose = FALSE,
NNGP = TRUE,
n.neighbors = 5,
search.type = 'cb',
n.report = 10,
n.burn = 500,
n.thin = 1,
n.chains = 1)
expect_s3_class(out, "sfJSDM")
})
test_that("verbose prints to the screen", {
expect_output(sfJSDM(formula = formula,
data = data.list,
inits = inits.list,
n.batch = n.batch,
batch.length = batch.length,
accept.rate = 0.43,
priors = prior.list,
cov.model = "exponential",
tuning = tuning.list,
n.factors = 3,
n.omp.threads = 1,
verbose = TRUE,
NNGP = TRUE,
n.neighbors = 5,
search.type = 'cb',
n.report = 10,
n.burn = 500,
n.thin = 1,
n.chains = 1))
})
# Check waicOcc -----------------------
test_that("waicOCC works for sfJSDM", {
# as.vector gets rid of names
waic.out <- as.vector(waicOcc(out))
expect_equal(length(waic.out), 3)
expect_equal(waic.out[3], -2 * (waic.out[1] - waic.out[2]))
})
test_that("fitted works for sfJSDM", {
fitted.out <- fitted(out)
expect_equal(length(fitted.out), 2)
expect_equal(class(fitted.out$z.samples), "array")
expect_equal(class(fitted.out$psi.samples), "array")
expect_equal(dim(fitted.out$z.samples), dim(fitted.out$psi.samples))
})
test_that("predict works for sfJSDM", {
n.post.samples <- out$n.post * out$n.chains
X.0 <- cbind(X.0, X.re.0)
colnames(X.0) <- c('int', 'occ.factor.1', 'occ.factor.2')
pred.out <- predict(out, X.0, coords.0, verbose = FALSE)
expect_type(pred.out, "list")
expect_equal(dim(pred.out$psi.0.samples), c(n.post.samples, N, nrow(X.0)))
expect_equal(dim(pred.out$z.0.samples), c(n.post.samples, N, nrow(X.0)))
})
test_that("posterior predictive checks work for sfJSDM", {
expect_error(ppcOcc(out, 'chi-square', 2))
})
# Random effects + covariate effects --------------------------------------
J.x <- 8
J.y <- 8
J <- J.x * J.y
n.rep<- sample(2:4, size = J, replace = TRUE)
N <- 6
# Community-level covariate effects
# Occurrence
beta.mean <- c(0.2, -0.5, 0.8)
p.occ <- length(beta.mean)
tau.sq.beta <- c(0.6, 1.2, 2.3)
# Detection
alpha.mean <- c(0)
tau.sq.alpha <- c(1)
p.det <- length(alpha.mean)
# Random effects
psi.RE <- list(levels = c(20, 30),
sigma.sq.psi = c(0.5, 1.5))
p.RE <- list()
# Draw species-level effects from community means.
beta <- matrix(NA, nrow = N, ncol = p.occ)
alpha <- matrix(NA, nrow = N, ncol = p.det)
for (i in 1:p.occ) {
beta[, i] <- rnorm(N, beta.mean[i], sqrt(tau.sq.beta[i]))
}
for (i in 1:p.det) {
alpha[, i] <- rnorm(N, alpha.mean[i], sqrt(tau.sq.alpha[i]))
}
alpha.true <- alpha
n.factors <- 3
phi <- rep(3 / .7, n.factors)
sigma.sq <- rep(2, n.factors)
nu <- rep(2, n.factors)
dat <- simMsOcc(J.x = J.x, J.y = J.y, n.rep = n.rep, N = N, beta = beta, alpha = alpha,
psi.RE = psi.RE, p.RE = p.RE, sp = TRUE, sigma.sq = sigma.sq,
phi = phi, nu = nu, cov.model = 'matern', factor.model = TRUE,
n.factors = n.factors)
pred.indx <- sample(1:J, round(J * .25), replace = FALSE)
y <- dat$y[, -pred.indx, , drop = FALSE]
# Occupancy covariates
X <- dat$X[-pred.indx, , drop = FALSE]
X.re <- dat$X.re[-pred.indx, , drop = FALSE]
coords <- as.matrix(dat$coords[-pred.indx, , drop = FALSE])
# Prediction covariates
X.0 <- dat$X[pred.indx, , drop = FALSE]
X.re.0 <- dat$X.re[pred.indx, , drop = FALSE]
coords.0 <- as.matrix(dat$coords[pred.indx, , drop = FALSE])
# Detection covariates
X.p <- dat$X.p[-pred.indx, , , drop = FALSE]
y <- apply(y, c(1, 2), max, na.rm = TRUE)
occ.covs <- cbind(X, X.re)
colnames(occ.covs) <- c('int', 'occ.cov.1', 'occ.cov.2', 'occ.factor.1', 'occ.factor.2')
data.list <- list(y = y, coords = coords, covs = occ.covs)
# Priors
prior.list <- list(beta.comm.normal = list(mean = 0, var = 2.72),
tau.sq.beta.ig = list(a = 0.1, b = 0.1),
nu.unif = list(0.5, 2.5))
# Starting values
inits.list <- list(beta.comm = 0,
beta = 0,
tau.sq.beta = 1)
# Tuning
tuning.list <- list(phi = 1, nu = 0.25)
batch.length <- 25
n.batch <- 40
n.report <- 100
formula <- ~ occ.cov.1 + occ.cov.2 + (1 | occ.factor.1) + (1 | occ.factor.2)
out <- sfJSDM(formula = formula,
data = data.list,
inits = inits.list,
n.batch = n.batch,
batch.length = batch.length,
accept.rate = 0.43,
priors = prior.list,
cov.model = "matern",
tuning = tuning.list,
n.factors = 3,
n.omp.threads = 1,
verbose = FALSE,
NNGP = TRUE,
n.neighbors = 5,
search.type = 'cb',
n.report = 10,
n.burn = 400,
n.thin = 2,
n.chains = 2,
k.fold = 2,
k.fold.threads = 1)
# To make sure it worked --------------
test_that("out is of class sfJSDM", {
expect_s3_class(out, "sfJSDM")
})
# Check summary -----------------------
test_that("summary works", {
expect_output(summary(out))
})
# Check cross-validation --------------
test_that("cross-validation works", {
expect_equal(length(out$k.fold.deviance), N)
expect_type(out$k.fold.deviance, "double")
expect_equal(sum(out$k.fold.deviance < 0), 0)
})
# Check random effects ----------------
test_that("random effects are correct", {
expect_equal(out$psiRE, TRUE)
})
# Check RE levels ---------------------
test_that("random effect gives error when non-numeric", {
data.list$covs <- as.data.frame(data.list$covs)
data.list$covs$occ.factor.1 <- factor(data.list$covs$occ.factor.1)
expect_error(out <- sfJSDM(formula = formula,
data = data.list,
inits = inits.list,
n.batch = n.batch,
batch.length = batch.length,
n.factors = 3,
accept.rate = 0.43,
priors = prior.list,
cov.model = "matern",
tuning = tuning.list,
n.omp.threads = 1,
verbose = FALSE,
NNGP = TRUE,
n.neighbors = 5,
search.type = 'cb',
n.report = 10,
n.burn = 400,
n.thin = 2,
n.chains = 1))
data.list$covs$occ.factor.1 <- as.character(factor(data.list$covs$occ.factor.1))
expect_error(out <- sfJSDM(formula = formula,
data = data.list,
inits = inits.list,
n.batch = n.batch,
batch.length = batch.length,
n.factors = 3,
accept.rate = 0.43,
priors = prior.list,
cov.model = "matern",
tuning = tuning.list,
n.omp.threads = 1,
verbose = FALSE,
NNGP = TRUE,
n.neighbors = 5,
search.type = 'cb',
n.report = 10,
n.burn = 400,
n.thin = 2,
n.chains = 1))
})
# Check output data output is correct -
test_that("out$y == y", {
expect_equal(out$y, y)
})
# Check default values ----------------
test_that("default priors, inits, burn, thin work", {
out <- sfJSDM(formula = formula,
data = data.list,
n.batch = n.batch,
batch.length = batch.length,
accept.rate = 0.43,
cov.model = "exponential",
tuning = tuning.list,
n.factors = 3,
NNGP = TRUE,
verbose = FALSE,
n.neighbors = 5,
n.chains = 1)
expect_s3_class(out, "sfJSDM")
})
test_that("all correlation functions work", {
out <- sfJSDM(formula = formula,
data = data.list,
inits = inits.list,
n.batch = n.batch,
batch.length = batch.length,
accept.rate = 0.43,
priors = prior.list,
cov.model = "gaussian",
tuning = list(phi = 0.3),
n.factors = 3,
n.omp.threads = 1,
verbose = FALSE,
NNGP = TRUE,
n.neighbors = 5,
search.type = 'cb',
n.report = 10,
n.burn = 500,
n.thin = 1,
n.chains = 1)
expect_s3_class(out, "sfJSDM")
out <- sfJSDM(formula = formula,
data = data.list,
inits = inits.list,
n.batch = n.batch,
batch.length = batch.length,
accept.rate = 0.43,
priors = prior.list,
cov.model = "spherical",
tuning = list(phi = 0.3),
n.factors = 3,
n.omp.threads = 1,
verbose = FALSE,
NNGP = TRUE,
n.neighbors = 5,
search.type = 'cb',
n.report = 10,
n.burn = 500,
n.thin = 1,
n.chains = 1)
expect_s3_class(out, "sfJSDM")
out <- sfJSDM(formula = formula,
data = data.list,
inits = inits.list,
n.batch = n.batch,
batch.length = batch.length,
accept.rate = 0.43,
priors = list(nu.unif = list(0.4, 3)),
cov.model = "matern",
tuning = list(phi = 0.3, nu = 0.2),
n.factors = 3,
n.omp.threads = 1,
verbose = FALSE,
NNGP = TRUE,
n.neighbors = 5,
search.type = 'cb',
n.report = 10,
n.burn = 500,
n.thin = 1,
n.chains = 1)
expect_s3_class(out, "sfJSDM")
})
test_that("verbose prints to the screen", {
expect_output(sfJSDM(formula = formula,
data = data.list,
inits = inits.list,
n.batch = n.batch,
batch.length = batch.length,
accept.rate = 0.43,
priors = prior.list,
cov.model = "exponential",
tuning = tuning.list,
n.factors = 3,
n.omp.threads = 1,
verbose = TRUE,
NNGP = TRUE,
n.neighbors = 5,
search.type = 'cb',
n.report = 10,
n.burn = 500,
n.thin = 1,
n.chains = 1))
})
# Check waicOcc -----------------------
test_that("waicOCC works for sfJSDM", {
# as.vector gets rid of names
waic.out <- as.vector(waicOcc(out))
expect_equal(length(waic.out), 3)
expect_equal(waic.out[3], -2 * (waic.out[1] - waic.out[2]))
})
test_that("fitted works for sfJSDM", {
fitted.out <- fitted(out)
expect_equal(length(fitted.out), 2)
expect_equal(class(fitted.out$z.samples), "array")
expect_equal(class(fitted.out$psi.samples), "array")
expect_equal(dim(fitted.out$z.samples), dim(fitted.out$psi.samples))
})
test_that("predict works for sfJSDM", {
n.post.samples <- out$n.post * out$n.chains
X.0 <- cbind(X.0, X.re.0)
colnames(X.0) <- c('int', 'occ.cov.1', 'occ.cov.2', 'occ.factor.1', 'occ.factor.2')
pred.out <- predict(out, X.0, coords.0, verbose = FALSE)
expect_type(pred.out, "list")
expect_equal(dim(pred.out$psi.0.samples), c(n.post.samples, N, nrow(X.0)))
expect_equal(dim(pred.out$z.0.samples), c(n.post.samples, N, nrow(X.0)))
})
test_that("posterior predictive checks work for sfJSDM", {
expect_error(ppcOcc(out, 'chi-square', 2))
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.