## initialize
setMethod(
f = "initialize",
signature = "SeqExpressionSet",
definition = function(.Object, ..., assayData=assayDataNew(
counts = matrix(0L, 0, 0),
normalizedCounts = matrix(0L, 0, 0),
offset = matrix(0L, 0, 0)))
{
callNextMethod(.Object, ..., assayData=assayData)
})
setValidity(
Class= "SeqExpressionSet",
method = function(object) {
is.wholenumber <- function(x, tol = .Machine$double.eps^0.5) {
abs(x - round(x)) < tol
}
msg <- validMsg(NULL, assayDataValidMembers(assayData(object), c("counts", "normalizedCounts", "offset")))
if(!is.null(assayDataElement(object, "counts"))) {
if(!is.matrix(assayDataElement(object, "counts"))) {
msg <- validMsg(msg, "'counts' must be an integer or numeric matrix")
}
if(!all(is.wholenumber(assayDataElement(object, "counts")), na.rm=TRUE)) {
warning("'counts' contains non-integer numbers")
}
}
if (is.null(msg))
TRUE
else msg
}
)
setMethod("updateObject",
signature = signature(object = "SeqExpressionSet"),
definition = function(object, ..., verbose = FALSE) {
if (verbose) {
message("updateObject(object = 'SeqExpressionSet')")
}
object <- callNextMethod()
if (isCurrent(object)["SeqExpressionSet"]) {
return(object)
} else {
classVersion(object)["SeqExpressionSet"] <- classVersion("SeqExpressionSet")["SeqExpressionSet"]
object
}
})
## constructor
newSeqExpressionSet <- function(counts,
normalizedCounts = matrix(data=NA, nrow=nrow(counts), ncol=ncol(counts),
dimnames=dimnames(counts)),
offset = matrix(data=0, nrow=nrow(counts), ncol=ncol(counts),
dimnames=dimnames(counts)),
phenoData = annotatedDataFrameFrom(counts, FALSE),
featureData = annotatedDataFrameFrom(counts, TRUE),
...) {
if(is.data.frame(phenoData)) {
phenoData <- AnnotatedDataFrame(phenoData)
}
if(is.data.frame(featureData)) {
featureData <- AnnotatedDataFrame(featureData)
}
new("SeqExpressionSet",
assayData = assayDataNew(counts=counts, normalizedCounts=normalizedCounts, offset=offset),
phenoData = phenoData,
featureData = featureData, ...)
}
## exprs DEPRECATED
setMethod(
f = "exprs",
signature = "SeqExpressionSet",
definition = function(object) {
.Deprecated("counts")
if(all(is.na(normCounts(object)))) {
counts <- counts(object)
} else {
counts <- normCounts(object)
}
return(counts)
}
)
setReplaceMethod(
f = "exprs",
signature = "SeqExpressionSet",
definition = function(object, value) {
.Deprecated("counts<-")
assayDataElement(object, "counts") <- as.matrix(value)
validObject(object)
object
}
)
## counts
setMethod(
f = "counts",
signature = "SeqExpressionSet",
definition = function(object) {
assayDataElement(object, "counts")
}
)
setReplaceMethod(
f = "counts",
signature = "SeqExpressionSet",
definition = function(object,value) {
assayDataElement(object, "counts") <- as.matrix(value)
validObject(object)
object
}
)
## normCounts
setMethod(
f = "normCounts",
signature = "SeqExpressionSet",
definition = function(object) {
assayDataElement(object, "normalizedCounts")
}
)
setReplaceMethod(
f = "normCounts",
signature = "SeqExpressionSet",
definition = function(object,value) {
assayDataElement(object, "normalizedCounts") <- as.matrix(value)
validObject(object)
object
}
)
## offst
setMethod(
f = "offst",
signature = "SeqExpressionSet",
definition = function(object) {
assayDataElement(object, "offset")
}
)
setReplaceMethod(
f = "offst",
signature = "SeqExpressionSet",
definition = function(object, value) {
assayDataElement(object, "offset") <- as.matrix(value)
validObject(object)
object
}
)
## some graphics
setMethod(
f = "boxplot",
signature = "SeqExpressionSet",
definition = function(x, ...) {
if(all(is.na(normCounts(x)))) {
boxplot(as.data.frame(log(counts(x) + 0.1)),...)
} else {
boxplot(as.data.frame(log(normCounts(x) + 0.1)),...)
}
}
)
setMethod(
f = "meanVarPlot",
signature = "SeqExpressionSet",
definition = function(x,log=FALSE,...) {
if(ncol(counts(x))<=1) {
stop("At least two samples are needed to compute variance.")
}
if(all(is.na(normCounts(x)))) {
counts <- counts(x)
} else {
counts <- normCounts(x)
}
m <- apply(counts, 1, mean)
v <- apply(counts, 1, var)
if(log) {
mm <- pmax(0, log(m))
vv <- pmax(0, log(v))
} else {
mm <- m[m<=quantile(m,probs=.9)]
vv <- v[m<=quantile(m,probs=.9)]
}
smoothScatter(mm,vv,xlab="mean",ylab="variance",...)
lines(abline(0,1))
lines(lowess(mm,vv),col=2)
}
)
setMethod(
f = "biasPlot",
signature = signature(x="matrix", y="numeric"),
definition = function(x, y, cutoff=1000, log=FALSE, col=NULL, ...) {
if(log) {
x <- log(x + 0.1)
}
if(is.null(col)) {
col <- 1:ncol(x)
} else if(length(col) < ncol(x)) {
col = rep(col,length.out=ncol(x))
}
plot(lowess(y[x[,1]<=cutoff],x[x[,1]<=cutoff,1]),type='l',col=col[1],...)
if(ncol(x)>1) {
for(i in 2:ncol(x)) {
lines(lowess(y[x[,i]<=cutoff],x[x[,i]<=cutoff,i]),col=col[i],type='l',...)
}
}
}
)
setMethod(
f = "biasPlot",
signature = signature(x="SeqExpressionSet", y="character"),
definition = function(x, y, cutoff=1000, log=FALSE, color_code=NULL, legend=TRUE, col=NULL, ..., xlab = y, ylab = "gene counts") {
flag <- FALSE
if(is.null(col)) {
if(is.null(color_code)) {
color_code <- 1
}
col <- as.numeric(as.factor(pData(x)[,color_code]))
flag <- TRUE
} else if(!is.null(color_code)) {
warning("If both col and color_code are specified, col overrides color_code")
}
if(all(is.na(normCounts(x)))) {
counts <- counts(x)
} else {
counts <- normCounts(x)
}
biasPlot(counts, fData(x)[,y], log=log, col=col, ..., xlab=xlab, ylab=ylab)
if(ncol(counts)>1 & legend & flag) {
legend("topleft",unique(as.character(pData(x)[,color_code])),fill=unique(pData(x)[,color_code]))
}
}
)
setMethod(
f = "biasBoxplot",
signature = signature(x="numeric",y="numeric",num.bins="ANY"),
definition = function(x, y, num.bins,...) {
if(missing(num.bins)) {
num.bins <- 10
}
bins <- cut(y,breaks=quantile(y,probs=seq(0,1,length.out=num.bins+1)))
bins[is.na(bins)] <- levels(bins)[1]
names(bins) <- names(y)
boxplot(x~bins,...)
abline(h=0,col=2)
}
)
setMethod(
f = "MDPlot",
signature = signature(x="matrix",y="numeric"),
definition = function(x, y, controls=NULL, ...) {
if(ncol(x)<=1) {
stop("At least a two-column matrix needed for the mean-difference plot.")
} else {
mean <- rowMeans(log(x + 0.1))
difference <- log(x[,y[2]] + 0.1)-log(x[,y[1]] + 0.1)
smoothScatter(mean,difference,...)
lines(lowess(mean,difference),col=1)
abline(h=0,lty=2)
if(!is.null(controls)) {
points(mean[controls], difference[controls], pch=20, col=2)
lines(lowess(mean[controls], difference[controls]), col=2)
}
}
}
)
setMethod(
f = "MDPlot",
signature = signature(x="SeqExpressionSet",y="numeric"),
definition = function(x, y, controls=NULL, ...) {
if(ncol(counts(x))<=1) {
stop("At least two samples needed for the mean-difference plot.")
} else {
if(all(is.na(normCounts(x)))) {
m <- counts(x)[,y]
} else {
m <- normCounts(x)[,y]
}
mean <- rowMeans(log(m + 0.1))
difference <- log(m[,2] + 0.1) - log(m[,1] + 0.1)
smoothScatter(mean,difference,...)
lines(lowess(mean,difference),col=1)
abline(h=0,lty=2)
if(!is.null(controls)) {
points(mean[controls], difference[controls], pch=20, col=2)
lines(lowess(mean[controls], difference[controls]), col=2)
}
}
}
)
setMethod(
f = "withinLaneNormalization",
signature = signature(x="matrix",y="numeric"),
definition = function(x, y, which=c("loess", "median", "upper", "full"), offset=FALSE, num.bins=10, round=TRUE) {
which <- match.arg(which)
if(which=="loess") {
retval <- .gcLoess(x,y)
} else {
retval <- .gcQuant(x,y,num.bins,which)
}
if(!offset) {
if(round) {
retval <- round(retval)
}
return(retval)
} else {
ret <- log(retval + 0.1)-log(x + 0.1)
return(ret)
}
}
)
setMethod(
f = "withinLaneNormalization",
signature = signature(x="SeqExpressionSet", y="character"),
definition = function(x, y, which=c("loess", "median", "upper", "full"),
offset=FALSE, num.bins=10, round=TRUE) {
if(offset) {
o <- withinLaneNormalization(counts(x),
fData(x)[,y],
which, offset, num.bins, round)
} else {
o <- offst(x)
}
newSeqExpressionSet(counts=counts(x),
normalizedCounts=withinLaneNormalization(counts(x),
fData(x)[,y], which, offset=FALSE, num.bins, round),
offset=o,
phenoData=phenoData(x), featureData=featureData(x))
}
)
#between-lane
setMethod(
f = "betweenLaneNormalization",
signature = signature(x="matrix"),
definition = function(x, which=c("median", "upper", "full"), offset=FALSE, round=TRUE) {
which <- match.arg(which)
if(which=="full") {
retval <- normalizeQuantileRank(as.matrix(x), robust=TRUE)
} else {
if(which=="upper") {
sum <- apply(x, 2, quantile, 0.75)
} else {
sum <- apply(x, 2, median)
}
sum <- sum/mean(sum)
retval <- scale(x, center=FALSE, scale=sum)
}
if(!offset) {
if(round) {
retval <- round(retval)
}
return(retval)
} else {
ret <- log(retval + 0.1) - log(x + 0.1)
return(ret)
}
}
)
setMethod(
f = "betweenLaneNormalization",
signature = signature(x="SeqExpressionSet"),
definition = function(x, which=c("median","upper","full"), offset=FALSE, round=TRUE) {
if(all(is.na(normCounts(x)))) {
counts <- counts(x)
} else {
counts <- normCounts(x)
}
if(offset) {
o = offst(x) + betweenLaneNormalization(counts, which, offset=TRUE, round)
}
else {
o = offst(x)
}
newSeqExpressionSet(counts=counts(x),
normalizedCounts=betweenLaneNormalization(counts,
which, offset=FALSE, round),
offset=o,
phenoData=phenoData(x), featureData=featureData(x))
}
)
setMethod(
f = "plotRLE",
signature = signature(x="matrix"),
definition = function(x,...) {
y <- log(x+1)
median <- apply(y, 1, median)
rle <- apply(y, 2, function(x) x - median)
boxplot(rle, ...)
abline(h=0, lty=2)
invisible(rle)
}
)
setMethod(
f = "plotRLE",
signature = signature(x="SeqExpressionSet"),
definition = function(x, ...) {
if(ncol(counts(x))<=1) {
stop("At least two samples needed for the mean-difference plot.")
} else {
if(all(is.na(normCounts(x)))) {
counts <- counts(x)
} else {
counts <- normCounts(x)
}
plotRLE(counts, ...)
}
}
)
setMethod(
f = "plotPCA",
signature = signature(object="matrix"),
definition = function(object, k=2, labels=TRUE, isLog=FALSE, ...) {
if(!isLog) {
Y <- apply(log(object+1), 1, function(y) scale(y, center=TRUE, scale=FALSE))
} else {
Y <- apply(object, 1, function(y) scale(y, center=TRUE, scale=FALSE))
}
s <- svd(Y)
percent <- s$d^2/sum(s$d^2)*100
labs <- sapply(seq_along(percent), function(i) {
paste("PC ", i, " (", round(percent[i], 2), "%)", sep="")
})
if(k>ncol(object)) {
stop("The number of PCs must be less than the number of samples.")
}
if(k<2) {
stop("The number of PCs must be at least 2.")
} else if (k==2) {
if(labels) {
plot(s$u[,1], s$u[,2], type='n', ...,
xlab=labs[1], ylab=labs[2])
text(s$u[,1], s$u[,2], labels=colnames(object), ...)
} else {
plot(s$u[,1], s$u[,2], ...,
xlab=labs[1], ylab=labs[2])
}
} else {
colnames(s$u) <- labs
pairs(s$u[,1:k], ...)
}
}
)
setMethod(
f = "plotPCA",
signature = signature(object="SeqExpressionSet"),
definition = function(object, k=2, labels=TRUE, ...) {
if(ncol(counts(object))<=1) {
stop("At least two samples needed for the PCA plot.")
} else {
if(all(is.na(normCounts(object)))) {
counts <- counts(object)
} else {
counts <- normCounts(object)
}
plotPCA(counts, k=k, labels=labels, isLog=FALSE, ...)
}
}
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.