#' Estimate Parameters From Real Datasets by POWSC
#'
#' This function is used to estimate useful parameters from a real dataset by
#' using `Est2Phase` function in POWSC package.
#'
#' @param ref_data A count matrix. Each row represents a gene and each column
#' represents a cell.
#' @param verbose Logical.
#' @param other_prior A list with names of certain parameters. Some methods need
#' extra parameters to execute the estimation step, so you must input them. In
#' simulation step, the number of cells, genes, groups, batches, the percent of
#' DEGs and other variables are usually customed, so before simulating a dataset
#' you must point it out.
#' @param seed An integer of a random seed.
#' @details
#' When you use POWSC to estimate parameters from a real dataset, the default settings
#' are recommended.
#' @importFrom peakRAM peakRAM
#' @return A list contains the estimated parameters and the results of execution
#' detection.
#' @export
#' @examples
#' \dontrun{
#' ref_data <- SingleCellExperiment::counts(scater::mockSCE())
#'
#' ## estimation
#' estimate_result <- simmethods::POWSC_estimation(ref_data = ref_data,
#' other_prior = NULL,
#' verbose = TRUE,
#' seed = 111)
#' }
#'
POWSC_estimation <- function(ref_data,
verbose = FALSE,
other_prior = NULL,
seed
){
##############################################################################
#### Environment ###
##############################################################################
if(!requireNamespace("POWSC", quietly = TRUE)){
message("Splatter is not installed on your device...")
message("Installing POWSC...")
BiocManager::install("POWSC")
}
##############################################################################
#### Check ###
##############################################################################
if(!is.matrix(ref_data)){
ref_data <- as.matrix(ref_data)
}
if(is.null(other_prior[["low.prob"]])){
low.prob <- 0.99
}else{
low.prob <- other_prior[["low.prob"]]
}
##############################################################################
#### Estimation ###
##############################################################################
if(verbose){
message("Estimating parameters using POWSC")
}
# Seed
set.seed(seed)
# Estimation
estimate_detection <- peakRAM::peakRAM(
estimate_result <- POWSC::Est2Phase(ref_data, low.prob = low.prob)
)
##############################################################################
#### Ouput ###
##############################################################################
estimate_output <- list(estimate_result = estimate_result,
estimate_detection = estimate_detection)
return(estimate_output)
}
#' Simulate Datasets by POWSC
#'
#' This function is used to simulate datasets from learned parameters by `Simulate2SCE`
#' function in POWSC package.
#'
#' @param parameters A object generated by [POWSC::Est2Phase()]
#' @param other_prior A list with names of certain parameters. Some methods need
#' extra parameters to execute the estimation step, so you must input them. In
#' simulation step, the number of cells, genes, groups, batches, the percent of
#' DEGs and other variables are usually customed, so before simulating a dataset
#' you must point it out.
#' @param return_format A character. Alternative choices: list, SingleCellExperiment,
#' Seurat, h5ad. If you select `h5ad`, you will get a path where the .h5ad file saves to.
#' @param verbose Logical. Whether to return messages or not.
#' @param seed A random seed.
#' @details
#' In addtion to simulate datasets with default parameters, users want to simulate
#' other kinds of datasets, e.g. a counts matrix with 2 or more cell groups. In
#' POWSC, you can set extra parameters to simulate datasets.
#'
#' The customed parameters you can set are below:
#' 1. nCells. In POWSC, you can set nCells directly by `other_prior = list(nCells = 1000)`.
#' 2. nGroups. POWSC can only simulate **two** groups.
#' 3. de.prob. You can directly set `other_prior = list(de.prob = 0.2)` to simulate DEGs that account for 20 percent of all genes.
#' @importFrom SingleCellExperiment counts colData rowData
#' @importFrom stringr str_replace
#' @export
#' @examples
#' \dontrun{
#' ref_data <- SingleCellExperiment::counts(scater::mockSCE())
#'
#' ## estimation
#' estimate_result <- simmethods::POWSC_estimation(ref_data = ref_data,
#' other_prior = NULL,
#' verbose = TRUE,
#' seed = 111)
#'
#' ## default setting
#' simulate_result <- simmethods::POWSC_simulation(
#' parameters = estimate_result[["estimate_result"]],
#' other_prior = NULL,
#' return_format = "list",
#' verbose = TRUE,
#' seed = 111
#' )
#' ## counts
#' counts <- simulate_result[["simulate_result"]][["count_data"]]
#' dim(counts)
#' ## cell information
#' col_data <- simulate_result[["simulate_result"]][["col_meta"]]
#' table(col_data$group)
#' ## gene information
#' row_data <- simulate_result[["simulate_result"]][["row_meta"]]
#' table(row_data$de_gene)
#'
#'
#' ## Simulate 1000 cells (de.prob = 0.2)
#' simulate_result <- simmethods::POWSC_simulation(
#' parameters = estimate_result[["estimate_result"]],
#' other_prior = list(nCells = 1000,
#' de.prob = 0.2),
#' return_format = "list",
#' verbose = TRUE,
#' seed = 111
#' )
#' ## counts
#' counts <- simulate_result[["simulate_result"]][["count_data"]]
#' dim(counts)
#' ## cell information
#' col_data <- simulate_result[["simulate_result"]][["col_meta"]]
#' table(col_data$group)
#' ## gene information
#' row_data <- simulate_result[["simulate_result"]][["row_meta"]]
#' table(row_data$de_gene)
#' }
#'
POWSC_simulation <- function(parameters,
other_prior = NULL,
return_format,
verbose = FALSE,
seed
){
##############################################################################
#### Environment ###
##############################################################################
if(!requireNamespace("POWSC", quietly = TRUE)){
message("Splatter is not installed on your device...")
message("Installing POWSC...")
BiocManager::install("POWSC")
}
##############################################################################
#### Check ###
##############################################################################
if(is.null(other_prior[["nCells"]])){
n <- ncol(parameters[["exprs"]])
}else{
n <- other_prior[["nCells"]]
}
if(is.null(other_prior[["de.prob"]])){
perDE <- 0.05
}else{
perDE <- other_prior[["de.prob"]]/2
}
message(paste0("nCells: ", n))
message(paste0("nGenes: ", dim(parameters[['exprs']])[1]))
message("nGroups: 2")
message(paste0("de.prob: ", perDE *2))
##############################################################################
#### Simulation ###
##############################################################################
if(verbose){
message("Simulating datasets using POWSC")
}
# Seed
set.seed(seed)
# Simulation
simulate_detection <- peakRAM::peakRAM(
simulate_result <- POWSC::Simulate2SCE(n = n,
perDE = perDE,
estParas1 = parameters,
estParas2 = parameters))
##############################################################################
#### Format Conversion ###
##############################################################################
counts <- SingleCellExperiment::counts(simulate_result[["sce"]])
colnames(counts) <- paste0("Cell", c(1:ncol(counts)))
rownames(counts) <- paste0("Gene", c(1:nrow(counts)))
## cell information
col_data <- data.frame("cell_name" = colnames(counts),
"group" = ifelse(colData(simulate_result[["sce"]])[,1] == "celltype1", "Group1", "Group2"))
## gene information
de_gene <- as.numeric(str_extract_all(simulate_result[["DEGs"]],
"[0-9]+",
simplify = TRUE))
row_data <- data.frame("gene_name" = rownames(counts),
"de_gene" = "no")
row_data$de_gene[de_gene] <- "yes"
# Establish SingleCellExperiment
simulate_result <- SingleCellExperiment::SingleCellExperiment(list(counts = counts),
colData = col_data,
rowData = row_data)
simulate_result <- simutils::data_conversion(SCE_object = simulate_result,
return_format = return_format)
##############################################################################
#### Ouput ###
##############################################################################
simulate_output <- list(simulate_result = simulate_result,
simulate_detection = simulate_detection)
return(simulate_output)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.