#' Estimate Parameters From Real Datasets by scMultiSim
#'
#' This function is used to estimate useful parameters from a real dataset by
#' using \code{make_trees} function in simutils package.
#'
#' @param ref_data A count matrix. Each row represents a gene and each column
#' represents a cell.
#' @param verbose Logical.
#' @param other_prior A list with names of certain parameters. Some methods need
#' extra parameters to execute the estimation step, so you must input them. In
#' simulation step, the number of cells, genes, groups, batches, the percent of
#' DEGs are usually customed, so before simulating a dataset you must point it out.
#' See `Details` below for more information.
#' @param seed An integer of a random seed.
#' @importFrom simutils make_trees
#' @return A list contains the estimated parameters and the results of execution
#' detection.
#' @export
#' @details
#' In scMultiSim, users can input cell group information by `other_prior = list(group.condition = xxx)`.
#' If this information is not available, we will detect the potential groups in reference data automatically.
#' For more information about scMultiSim, see `Examples` and `References`.
#'
#' @references
#' Li H, Zhang Z, Squires M, et al. scMultiSim: simulation of multi-modality single cell data guided by cell-cell interactions and gene regulatory networks. bioRxiv, 2022: 2022.10. 15.512320. <https://doi.org/10.1101/2022.10.15.512320>
#'
#' Github URL: <https://github.com/ZhangLabGT/scMultiSim>
#'
#'
#' @examples
#' \dontrun{
#' ref_data <- simmethods::data
#' ## estimation
#' estimate_result <- simmethods::scMultiSim_estimation(
#' ref_data = ref_data,
#' other_prior = NULL,
#' verbose = TRUE,
#' seed = 111
#' )
#' }
#'
scMultiSim_estimation <- function(ref_data,
other_prior = NULL,
verbose = FALSE,
seed){
##############################################################################
#### Environment ###
##############################################################################
if(!requireNamespace("simutils", quietly = TRUE)){
message("Splatter is not installed on your device")
message("Installing simutils...")
devtools::install_github("duohongrui/simutils")
}
##############################################################################
#### Check ###
##############################################################################
if(!is.matrix(ref_data)){
ref_data <- as.matrix(ref_data)
}
if(!is.null(other_prior[["group.condition"]])){
group <- other_prior[["group.condition"]]
}else{
group <- NULL
}
##############################################################################
#### Estimation ###
##############################################################################
if(verbose){
message("Estimating parameters using scMultiSim")
}
# Seed
set.seed(seed)
# Estimation
estimate_detection <- peakRAM::peakRAM(
estimate_result <- simutils::make_trees(ref_data,
group = group,
is_Newick = FALSE,
is_parenthetic = TRUE)
)
estimate_result <- list(phylo = estimate_result[[1]],
data_dim = dim(ref_data))
##############################################################################
#### Ouput ###
##############################################################################
estimate_output <- list(estimate_result = estimate_result,
estimate_detection = estimate_detection)
return(estimate_output)
}
#' Simulate Datasets by scMultiSim
#'
#' @param parameters A object generated by [simutils::make_trees()]
#' @param other_prior A list with names of certain parameters. Some methods need
#' extra parameters to execute the estimation step, so you must input them. In
#' simulation step, the number of cells, genes, groups, batches, the percent of
#' DEGs are usually customed, so before simulating a dataset you must point it out.
#' See `Details` below for more information.
#' @param return_format A character. Alternative choices: list, SingleCellExperiment,
#' Seurat, h5ad. If you select `h5ad`, you will get a path where the .h5ad file saves to.
#' @param verbose Logical. Whether to return messages or not.
#' @param seed A random seed.
#' @importFrom stringr str_split str_count str_extract_all str_replace
#' @importFrom dplyr select
#' @importFrom scMultiSim sim_true_counts add_expr_noise divide_batches
#' @export
#' @details
#' In scMultiSim, `nCells` and `nGenes` are usually customed and users can set
#' `other_prior = list(nCells = 1000, nGenes = 2000)` to simulate 1000 cells and 5000 genes.
#' In addition, `nBatches` can be customed for simulating the cell batches.
#'
#'
#' @references
#' Li H, Zhang Z, Squires M, et al. scMultiSim: simulation of multi-modality single cell data guided by cell-cell interactions and gene regulatory networks. bioRxiv, 2022: 2022.10. 15.512320. <https://doi.org/10.1101/2022.10.15.512320>
#'
#' Github URL: <https://github.com/ZhangLabGT/scMultiSim>
#'
#' @examples
#' ref_data <- simmethods::data
#' ## estimation
#' estimate_result <- simmethods::scMultiSim_estimation(
#' ref_data = ref_data,
#' other_prior = NULL,
#' verbose = TRUE,
#' seed = 111
#' )
#'
#' # 1) Simulate with default parameters
#' simulate_result <- simmethods::scMultiSim_simulation(
#' parameters = estimate_result[["estimate_result"]],
#' other_prior = NULL,
#' return_format = "list",
#' verbose = TRUE,
#' seed = 111
#' )
#' ## counts
#' counts <- simulate_result[["simulate_result"]][["count_data"]]
#' dim(counts)
#'
scMultiSim_simulation <- function(parameters,
other_prior = NULL,
return_format,
verbose = FALSE,
seed
){
##############################################################################
#### Check ###
##############################################################################
# nGenes
if(!is.null(other_prior[["nGenes"]])){
other_prior[["num.genes"]] <- other_prior[["nGenes"]]
other_prior <- other_prior[-which(names(other_prior) == "nGenes")]
}else{
other_prior[["num.genes"]] <- parameters$data_dim[1]
}
# nCells
if(!is.null(other_prior[["nCells"]])){
other_prior[["num.cells"]] <- other_prior[["nCells"]]
other_prior <- other_prior[-which(names(other_prior) == "nCells")]
}else{
other_prior[["num.cells"]] <- parameters$data_dim[2]
}
other_prior[["tree"]] <- parameters$phylo
other_prior[["rand.seed"]] <- seed
other_prior[["GRN"]] <- NA
### trajectory
if(is.null(other_prior[["traj"]])){
other_prior[["discrete.cif"]] <- TRUE
}else{
cat("Simulating datasets with trajectory.../n")
other_prior[["discrete.cif"]] <- FALSE
}
### group
other_prior[["discrete.min.pop.size"]] <- 3
if(is.null(other_prior[["prob.group"]])){
other_prior[["discrete.pop.size"]] <- NA
}else{
other_prior[["discrete.pop.size"]] <- simutils::proportionate(number = other_prior[["num.cells"]],
result_sum_strict = other_prior[["num.cells"]],
prop = other_prior[["prob.group"]],
prop_sum_strict = 1,
digits = 0)
other_prior[["discrete.pop.size"]] <- as.integer(other_prior[["discrete.pop.size"]])
}
### batch
if(is.null(other_prior[["nBatches"]])){
nBatches <- 1
}else{
nBatches <- other_prior[["nBatches"]]
other_prior <- other_prior[-which(names(other_prior) == "nBatches")]
}
# Return to users
message(paste0("nCells: ", other_prior[["num.cells"]]))
message(paste0("nGenes: ", other_prior[["num.genes"]]))
message(paste0("nGroups: ", nrow(parameters$phylo$edge)))
message(paste0("nBatches: ", nBatches))
##############################################################################
#### Simulation ###
##############################################################################
if(verbose){
message("Simulating datasets using scMultiSim")
}
# Estimation
set.seed(seed)
if(nBatches == 1){
try_error <- try(
simulate_detection <- peakRAM::peakRAM(
simulate_result <- excution_function(options = other_prior,
seed = seed)
)
)
}else{
try_error <- try(
simulate_detection <- peakRAM::peakRAM(
simulate_result <- excution_batch_function(options = other_prior,
seed = seed,
nbatch = nBatches)
)
)
}
##############################################################################
#### Format Conversion ###
##############################################################################
## col_data
cell_meta <- simulate_result$cell_meta
col_data <- cell_meta %>%
mutate(
group = paste0("group", rep(c(1:length(table(cell_meta$pop))), table(cell_meta$pop)))
) %>%
dplyr::select("cell_id", "group")
if(nBatches > 1){
col_data$"batch" <- paste0("Batch", cell_meta$batch)
counts <- simulate_result$counts_with_batches
rownames(counts) <- rownames(simulate_result$counts)
colnames(counts) <- colnames(simulate_result$counts)
}else{
counts <- simulate_result$counts
}
colnames(col_data)[1] <- "cell_name"
## row_data
row_data <- data.frame("gene_name" = rownames(counts))
# Establish SingleCellExperiment
simulate_result <- SingleCellExperiment::SingleCellExperiment(list(counts = counts),
colData = col_data,
rowData = row_data)
simulate_result <- simutils::data_conversion(SCE_object = simulate_result,
return_format = return_format)
##############################################################################
#### Ouput ###
##############################################################################
simulate_output <- list(simulate_result = simulate_result,
simulate_detection = simulate_detection)
return(simulate_output)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.