#' Estimate Parameters From Real Datasets by phenopath
#'
#' This function is used to estimate useful parameters from a real dataset by
#' using \code{phenoEstimate} function in Splatter package.
#'
#' @param ref_data A count matrix. Each row represents a gene and each column
#' represents a cell.
#' @param verbose Logical.
#' @param seed An integer of a random seed.
#' @importFrom splatter phenoEstimate
#' @return A list contains the estimated parameters and the results of execution
#' detection.
#' @export
#'
#' @references
#' Campbell K, Yau C. Uncovering genomic trajectories with heterogeneous genetic and environmental backgrounds across single-cells and populations. bioRxiv, 2017: 159913. <https://doi.org/10.1101/159913>
#'
#' Bioconductor URL: <https://bioconductor.org/packages/release/bioc/html/phenopath.html>
#'
#' Github URL: <https://github.com/kieranrcampbell/phenopath>
#'
#' @examples
#' \dontrun{
#' ref_data <- simmethods::data
#' ## estimation
#' estimate_result <- simmethods::phenopath_estimation(
#' ref_data = ref_data,
#' verbose = TRUE,
#' seed = 111
#' )
#' }
#'
phenopath_estimation <- function(ref_data,
verbose = FALSE,
seed){
##############################################################################
#### Environment ###
##############################################################################
if(!requireNamespace("splatter", quietly = TRUE)){
message("Splatter is not installed on your device")
message("Installing splatter...")
BiocManager::install("splatter")
}
##############################################################################
#### Check ###
##############################################################################
if(!is.matrix(ref_data)){
ref_data <- as.matrix(ref_data)
}
##############################################################################
#### Estimation ###
##############################################################################
if(verbose){
message("Estimating parameters using phenopath")
}
# Seed
set.seed(seed)
# Estimation
estimate_detection <- peakRAM::peakRAM(
estimate_result <- splatter::phenoEstimate(ref_data)
)
##############################################################################
#### Ouput ###
##############################################################################
estimate_output <- list(estimate_result = estimate_result,
estimate_detection = estimate_detection)
return(estimate_output)
}
#' Simulate Datasets by phenopath
#'
#' @param parameters A object generated by [splatter::phenoEstimate()]
#' @param other_prior A list with names of certain parameters. Some methods need
#' extra parameters to execute the estimation step, so you must input them. In
#' simulation step, the number of cells, genes, groups, batches, the percent of
#' DEGs are usually customed, so before simulating a dataset you must point it out.
#' See `Details` below for more information.
#' @param return_format A character. Alternative choices: list, SingleCellExperiment,
#' Seurat, h5ad. If you select `h5ad`, you will get a path where the .h5ad file saves to.
#' @param verbose Logical. Whether to return messages or not.
#' @param seed A random seed.
#' @importFrom splatter getParams setParam
#' @export
#' @details
#' In phenopath, users can only set `nCells` and `nGenes` to specify the number of cells and genes in the
#' simulated dataset. See `Examples` for instructions.
#'
#' For more customed parameters, see [splatter::PhenoParams()] and [splatter::phenoSimulate()].
#'
#' @references
#' Campbell K, Yau C. Uncovering genomic trajectories with heterogeneous genetic and environmental backgrounds across single-cells and populations. bioRxiv, 2017: 159913. <https://doi.org/10.1101/159913>
#'
#' Bioconductor URL: <https://bioconductor.org/packages/release/bioc/html/phenopath.html>
#'
#' Github URL: <https://github.com/kieranrcampbell/phenopath>
#'
#' @examples
#' \dontrun{
#' ref_data <- simmethods::data
#' ## estimation
#' estimate_result <- simmethods::phenopath_estimation(
#' ref_data = ref_data,
#' verbose = TRUE,
#' seed = 111
#' )
#'
#' # 1) Simulate with default parameters
#' simulate_result <- simmethods::phenopath_simulation(
#' parameters = estimate_result[["estimate_result"]],
#' other_prior = NULL,
#' return_format = "list",
#' verbose = TRUE,
#' seed = 111
#' )
#' ## counts
#' counts <- simulate_result[["simulate_result"]][["count_data"]]
#' dim(counts)
#'
#' # 2) 5000 cells and 6000 genes
#' simulate_result <- simmethods::phenopath_simulation(
#' parameters = estimate_result[["estimate_result"]],
#' other_prior = list(nCells = 5000,
#' nGenes = 6000),
#' return_format = "list",
#' verbose = TRUE,
#' seed = 111
#' )
#'
#' ## counts
#' counts <- simulate_result[["simulate_result"]][["count_data"]]
#' dim(counts)
#' }
#'
phenopath_simulation <- function(parameters,
other_prior = NULL,
return_format,
verbose = FALSE,
seed
){
##############################################################################
#### Environment ###
##############################################################################
if(!requireNamespace("splatter", quietly = TRUE)){
message("Splatter is not installed on your device")
message("Installing splatter...")
BiocManager::install("phenopath")
}
##############################################################################
#### Check ###
##############################################################################
assertthat::assert_that(class(parameters) == "PhenoParams")
# nCells
if(!is.null(other_prior[["nCells"]])){
parameters <- splatter::setParam(parameters, name = "nCells", value = other_prior[["nCells"]])
}
# nGenes
if(!is.null(other_prior[["nGenes"]])){
gene_assign <- simutils::proportionate(number = other_prior[["nGenes"]],
result_sum_strict = other_prior[["nGenes"]],
prop = rep(0.25, 4),
prop_sum_strict = 1,
digits = 0)
parameters <- splatter::setParam(parameters, name = "n.de", value = gene_assign[1])
parameters <- splatter::setParam(parameters, name = "n.pst", value = gene_assign[2])
parameters <- splatter::setParam(parameters, name = "n.pst.beta", value = gene_assign[3])
parameters <- splatter::setParam(parameters, name = "n.de.pst.beta", value = gene_assign[4])
}
# Get params to check
params_check <- splatter::getParams(parameters, c("nCells",
"nGenes"))
# Return to users
message(paste0("nCells: ", params_check[['nCells']]))
message(paste0("nGenes: ", params_check[['nGenes']]))
# Get the parameters we are going to use
nCells <- splatter::getParam(parameters, "nCells")
nGenes <- splatter::getParam(parameters, "nGenes")
n.de <- splatter::getParam(parameters, "n.de")
n.pst <- splatter::getParam(parameters, "n.pst")
n.pst.beta <- splatter::getParam(parameters, "n.pst.beta")
n.de.pst.beta <- splatter::getParam(parameters, "n.de.pst.beta")
##############################################################################
#### Simulation ###
##############################################################################
if(verbose){
message("Simulating datasets using phenopath")
}
# Seed
parameters <- splatter::setParam(parameters, name = "seed", value = seed)
# Estimation
simulate_detection <- peakRAM::peakRAM(
pheno_sim <- phenopath::simulate_phenopath(N = nCells,
G_de = n.de,
G_pst = n.pst,
G_pst_beta = n.pst.beta,
G_de_pst_beta = n.de.pst.beta)
)
# Row and column names
cell.names <- paste0("Cell", seq_len(nCells))
gene.names <- paste0("Gene", seq_len(nGenes))
# Counts
exprs <- t(pheno_sim$y)
counts <- 2 ^ exprs - 1
counts[counts < 0] <- 0
counts <- round(counts)
rownames(counts) <- gene.names
colnames(counts) <- cell.names
# Col data
col_data <- data.frame("cell_name" = cell.names)
rownames(col_data) <- cell.names
# Row data
row_data <- data.frame("gene_name" = gene.names)
rownames(row_data) <- gene.names
# SCE object
simulate_result <- SingleCellExperiment::SingleCellExperiment(assays = list(counts = counts),
colData = col_data,
rowData = row_data)
##############################################################################
#### Format Conversion ###
##############################################################################
simulate_result <- simutils::data_conversion(SCE_object = simulate_result,
return_format = return_format)
##############################################################################
#### Ouput ###
##############################################################################
simulate_output <- list(simulate_result = simulate_result,
simulate_detection = simulate_detection)
return(simulate_output)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.