#' @title Compute intercept-only model for regression models
#' @name null_model
#'
#' @description This function computes the null-model (i.e. `(y ~ 1)`) of
#' a model. For mixed models, the null-model takes random effects into account.
#'
#' @param model A (mixed effects) model.
#' @param verbose Toggle off warnings.
#' @param ... Arguments passed to or from other methods.
#'
#' @return The null-model of `x`
#'
#' @examplesIf require("lme4", quietly = TRUE)
#' data(sleepstudy)
#' m <- lmer(Reaction ~ Days + (1 + Days | Subject), data = sleepstudy)
#' summary(m)
#' summary(null_model(m))
#'
#' @export
null_model <- function(model, ...) {
UseMethod("null_model")
}
#' @rdname null_model
#' @export
null_model.default <- function(model, verbose = TRUE, ...) {
# sanity check, if we missed adding a method. rstanarm and brms can both
# have mixed and non-mixed models, these are captured here as well
if (is_mixed_model(model)) {
return(null_model.glmmTMB(model, verbose, ...))
}
model_formula <- find_formula(model, verbose = verbose)
offset_term <- .grep_offset_term(model_formula)
# get model data and variables
model_data <- get_data(model, verbose = FALSE)
update_data <- .prepare_update_data(model, model_data)
# base arguments for call to `update()`
base_args <- list(model, ~1, evaluate = FALSE)
# add data, if any, and select appropriate environment for "eval()"
if (is.null(update_data)) {
env <- parent.frame()
} else {
base_args$data <- update_data
env <- NULL
}
# add offset, if any
if (!is.null(offset_term)) {
base_args$offset <- str2lang(offset_term)
}
out <- tryCatch(
suppressWarnings(do.call(stats::update, base_args)),
error = function(e) {
if (verbose && !is.null(offset_term)) {
format_warning(
"Model contains offset-terms, which could not be considered in the returned null-model.",
"Coefficients might be inaccurate."
)
}
base_args$offset <- NULL
suppressWarnings(do.call(stats::update, base_args))
}
)
suppressWarnings(eval(out, envir = env))
}
#' @export
null_model.multinom <- function(model, verbose = TRUE, ...) {
model_formula <- find_formula(model, verbose = verbose)
offset_term <- .grep_offset_term(model_formula)
# get model data and variables
model_data <- get_data(model, verbose = FALSE)
update_data <- .prepare_update_data(model, model_data)
# base arguments for call to `update()`
base_args <- list(model, ~1, evaluate = FALSE, trace = FALSE)
# add data, if any, and select appropriate environment for "eval()"
if (is.null(update_data)) {
env <- parent.frame()
} else {
base_args$data <- update_data
env <- NULL
}
out <- suppressWarnings(do.call(stats::update, base_args))
suppressWarnings(eval(out, envir = env))
}
#' @export
null_model.clm2 <- function(model, verbose = TRUE, ...) {
model_formula <- find_formula(model, verbose = verbose)
offset_term <- .grep_offset_term(model_formula)
# get model data and variables
model_data <- get_data(model, verbose = FALSE)
update_data <- .prepare_update_data(model, model_data)
# base arguments for call to `update()`
base_args <- list(model, ~1, evaluate = FALSE, location = ~1, scale = ~1)
# add data, if any, and select appropriate environment for "eval()"
if (is.null(update_data)) {
env <- parent.frame()
} else {
base_args$data <- update_data
env <- NULL
}
out <- suppressWarnings(do.call(stats::update, base_args))
suppressWarnings(eval(out, envir = env))
}
#' @export
null_model.MixMod <- function(model, verbose = TRUE, ...) {
model_formula <- find_formula(model, verbose = verbose)
offset_term <- .grep_offset_term(model_formula)
# get model data and variables
model_data <- get_data(model, verbose = FALSE)
update_data <- .prepare_update_data(model, model_data)
nullform <- stats::as.formula(paste(find_response(model), "~ 1"))
# base arguments for call to `update()`
base_args <- list(model, fixed = nullform, evaluate = FALSE)
# add data, if any, and select appropriate environment for "eval()"
if (is.null(update_data)) {
env <- parent.frame()
} else {
base_args$data <- update_data
env <- NULL
}
out <- suppressWarnings(do.call(stats::update, base_args))
null.model <- suppressWarnings(eval(out, envir = env))
# fix fixed effects formula
null.model$call$fixed <- nullform
null.model
}
#' @export
null_model.cpglmm <- function(model, verbose = TRUE, ...) {
model_formula <- find_formula(model, verbose = verbose)
offset_term <- .grep_offset_term(model_formula)
# get model data and variables
model_data <- get_data(model, verbose = FALSE)
update_data <- .prepare_update_data(model, model_data)
nullform <- model_formula[["random"]]
# base arguments for call to `update()`
base_args <- list(model, nullform, evaluate = FALSE)
# add data, if any, and select appropriate environment for "eval()"
if (is.null(update_data)) {
env <- parent.frame()
} else {
base_args$data <- update_data
env <- NULL
}
out <- suppressWarnings(do.call(stats::update, base_args))
suppressWarnings(eval(out, envir = env))
}
#' @export
null_model.glmmTMB <- function(model, verbose = TRUE, ...) {
# sanity check, some moodels of class glmmTMB may not be mixed models
if (!is_mixed_model(model)) {
return(null_model.default(model, verbose, ...))
}
model_formula <- find_formula(model, verbose = verbose)
offset_term <- .grep_offset_term(model_formula)
# get model data and variables
model_data <- get_data(model, verbose = FALSE)
update_data <- .prepare_update_data(model, model_data)
if (inherits(model, "glmmTMB") && !is.null(model_formula$zero_inflated)) {
insight::check_if_installed("glmmTMB")
# for zero-inflated models, we need to create the NULL model for the
# zero-inflation part as well. Since "update()" won't work here, we need
# to extract all elements from the call and modify the formulas there
model_args <- lapply(get_call(model), safe_deparse)[-1]
formula_args <- endsWith(names(model_args), "formula")
resp <- find_response(model)
model_args[formula_args] <- lapply(names(model_args[formula_args]), function(f_names) {
f <- model_args[[f_names]]
re_string <- sapply(.findbars(stats::as.formula(f)), safe_deparse)
if (is_empty_object(re_string)) {
stats::as.formula("~1")
} else if (any(startsWith(f_names, c("zi", "disp")))) {
stats::reformulate(paste0("(", re_string, ")"), response = NULL)
} else {
stats::reformulate(paste0("(", re_string, ")"), response = resp)
}
})
model_args[!formula_args] <- lapply(model_args[!formula_args], str2lang)
# add offset back
if (!is.null(offset_term)) {
model_args$offset <- str2lang(offset_term)
}
# add corrected data from model frame
if (!is.null(update_data)) {
model_args$data <- update_data
}
null.model <- do.call(glmmTMB::glmmTMB, model_args)
} else {
f <- stats::formula(model)
resp <- find_response(model)
# fix for brms models
if (inherits(model, "brmsfit")) {
f <- f$formula
}
re.terms <- paste0("(", sapply(.findbars(f), safe_deparse), ")")
nullform <- stats::reformulate(re.terms, response = resp)
null.model <- tryCatch(
{
fun_args <- list(model, formula = nullform, evaluate = FALSE)
if (!is.null(offset_term)) {
fun_args$offset <- str2lang(offset_term)
}
if (is.null(update_data)) {
env <- parent.frame()
} else {
fun_args$data <- update_data
env <- NULL
}
out <- suppressWarnings(do.call(stats::update, fun_args))
suppressWarnings(eval(out, envir = env))
},
error = function(e) {
msg <- e$message
if (verbose) {
if (grepl("(^object)(.*)(not found$)", msg)) {
print_color("Can't calculate null-model. Probably the data that was used to fit the model cannot be found.\n", "red") # nolint
} else if (startsWith(msg, "could not find function")) {
print_color("Can't calculate null-model. Probably you need to load the package that was used to fit the model.\n", "red") # nolint
}
}
NULL
}
)
}
null.model
}
#' @export
null_model.merMod <- null_model.glmmTMB
#' @export
null_model.lmerMod <- null_model.glmmTMB
#' @export
null_model.glmerMod <- null_model.glmmTMB
#' @export
null_model.rlmerMod <- null_model.glmmTMB
#' @export
null_model.nlmerMod <- null_model.glmmTMB
#' @export
null_model.cpglmm <- null_model.glmmTMB
#' @export
null_model.mixed <- null_model.glmmTMB
#' @export
null_model.coxme <- null_model.glmmTMB
#' @export
null_model.glmmadmb <- null_model.glmmTMB
# helper -------------------------------
.grep_offset_term <- function(model_formula) {
tryCatch(
{
f <- safe_deparse(model_formula$conditional)
if (grepl("offset(", f, fixed = TRUE)) {
out <- gsub("(.*)offset\\((.*)\\)(.*)", "\\2", f)
} else {
out <- NULL
}
out
},
error = function(e) {
NULL
}
)
}
.prepare_update_data <- function(model, model_data) {
tryCatch(
{
model_vars <- find_variables(
model,
effects = "all",
component = "all",
flatten = TRUE,
verbose = FALSE
)
# offset?
model_vars <- c(model_vars, find_offset(model))
# weights?
model_vars <- c(model_vars, find_weights(model))
# columns in model and data - we need to pass the filtered data set
cols <- intersect(model_vars, colnames(model_data))
model_data[stats::complete.cases(model_data[cols]), cols, drop = FALSE]
},
error = function(e) {
NULL
}
)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.