#' @export
data_plot.hdi <- function(x,
data = NULL,
show_intercept = FALSE,
...) {
.data_plot_hdi(x = x, data = data, show_intercept = show_intercept)
}
#' @export
data_plot.bayestestR_hdi <- data_plot.hdi
#' @export
data_plot.bayestestR_eti <- data_plot.hdi
#' @keywords internal
.data_plot_hdi <- function(x,
data = NULL,
parms = NULL,
show_intercept = FALSE,
...) {
if (is.null(data)) {
data <- .retrieve_data(x)
}
if (inherits(x, "bayestestR_hdi")) {
legend_title <- "HDI"
plot_title <- "Highest Density Interval (HDI)"
} else {
legend_title <- "CI"
plot_title <- "Credible Interval (CI)"
}
if (!is.null(parms)) {
params <- parms
} else {
params <- NULL
}
if (inherits(data, "emmGrid")) {
insight::check_if_installed("emmeans")
data <- as.data.frame(as.matrix(emmeans::as.mcmc.emmGrid(data, names = FALSE)))
} else if (inherits(data, c("stanreg", "brmsfit"))) {
params <- insight::clean_parameters(data)
data <- as.data.frame(data, optional = FALSE)
} else if (inherits(data, "BFBayesFactor")) {
data <- insight::get_parameters(data)
} else if (inherits(data, "MCMCglmm")) {
params <- insight::clean_parameters(data)
nF <- data$Fixed$nfl
data <- as.data.frame(data$Sol[, 1:nF, drop = FALSE])
} else {
data <- as.data.frame(data)
}
if (ncol(data) > 1L) {
levels_order <- unique(rev(x$Parameter))
data <- data[levels_order]
dataplot <- data.frame()
for (i in names(data)) {
if (!is.null(params)) {
dataplot <- rbind(
dataplot,
cbind(
.compute_densities_hdi(data[[i]], hdi = as.data.frame(x[x$Parameter == i, ]), name = i),
"Effects" = params$Effects[params$Parameter == i],
"Component" = params$Component[params$Parameter == i]
)
)
} else {
dataplot <- rbind(
dataplot,
.compute_densities_hdi(data[[i]], hdi = as.data.frame(x[x$Parameter == i, ]), name = i)
)
}
}
if ("Effects" %in% names(dataplot) && "Component" %in% names(dataplot)) {
if (length(unique(dataplot$Effects)) == 1 && length(unique(dataplot$Component)) == 1) {
dataplot$Effects <- NULL
dataplot$Component <- NULL
} else {
if (is.factor(dataplot$Effects)) {
dataplot$Effects <- factor(dataplot$Effects, levels = sort(levels(dataplot$Effects)))
} else {
dataplot$Effects <- factor(dataplot$Effects, levels = unique(dataplot$Effects))
}
if (is.factor(dataplot$Component)) {
dataplot$Component <- factor(dataplot$Component, levels = sort(levels(dataplot$Component)))
} else {
dataplot$Component <- factor(dataplot$Component, levels = unique(dataplot$Component))
}
}
}
} else {
levels_order <- NULL
dataplot <- .compute_densities_hdi(x = data[, 1], hdi = x, name = "Posterior")
}
cn <- intersect(c("x", "y", "height", "fill", "Effects", "Component"), colnames(dataplot))
dataplot <- dataplot[, cn, drop = FALSE]
if (!is.null(levels_order)) {
dataplot$y <- factor(dataplot$y, levels = levels_order)
}
groups <- unique(dataplot$y)
if (!show_intercept) {
dataplot <- .remove_intercept(dataplot, column = "y", show_intercept)
groups <- unique(setdiff(groups, .intercept_names))
}
if (length(groups) == 1) {
ylab <- groups
dataplot$y <- 0
} else {
ylab <- "Parameters"
}
dataplot <- .fix_facet_names(dataplot)
attr(dataplot, "info") <- list(
xlab = "Possible parameter values",
ylab = ylab,
legend_fill = legend_title,
title = plot_title
)
class(dataplot) <- c("data_plot", "see_hdi", class(dataplot))
dataplot
}
#' @keywords internal
.compute_densities_hdi <- function(x, hdi, name = "Y") {
hdi <- hdi[order(hdi$CI, decreasing = TRUE), ]
out <- .as.data.frame_density(stats::density(x))
out$HDI_low <- sapply(out$x, .classify_hdi, hdi$CI_low, c(100, 100 * hdi$CI))
out$HDI_high <- sapply(out$x, .classify_hdi, rev(hdi$CI_high), c(rev(100 * hdi$CI), 100))
out$fill <- as.factor(pmax(out$HDI_low, out$HDI_high))
out$height <- out$y
out$y <- name
levels(out$fill) <- sprintf("%s%%", levels(out$fill))
# normalize
out$height <- as.vector((out$height - min(out$height, na.rm = TRUE)) / diff(range(out$height, na.rm = TRUE), na.rm = TRUE))
out
}
#' @keywords internal
.classify_hdi <- function(x, breakpoints, labels, if_lower = TRUE) {
limits <- list(
breakpoints = breakpoints,
labels = labels
)
check <- x < limits$breakpoints
if (TRUE %in% check) {
index <- min(which(check))
} else {
index <- length(limits$labels)
}
out <- limits$labels[index]
out
}
# Plot --------------------------------------------------------------------
#' Plot method for uncertainty or credible intervals
#'
#' The `plot()` method for the `bayestestR::hdi()` and related
#' function.
#'
#' @param show_zero Logical. If `TRUE`, will add a vertical (dotted) line
#' at 0.
#' @param show_title Logical. If `TRUE`, will show the title of the plot.
#' @inheritParams data_plot
#' @inheritParams plot.see_bayesfactor_parameters
#' @inheritParams plot.see_parameters_model
#'
#' @return A ggplot2-object.
#'
#' @examplesIf identical(Sys.getenv("NOT_CRAN"), "true") && require("rstanarm")
#' library(rstanarm)
#' library(bayestestR)
#' set.seed(123)
#' m <- suppressWarnings(stan_glm(Sepal.Length ~ Petal.Width * Species, data = iris, refresh = 0))
#' result <- bayestestR::hdi(m)
#' result
#' plot(result)
#'
#' @export
plot.see_hdi <- function(x,
data = NULL,
show_intercept = FALSE,
show_zero = TRUE,
show_title = TRUE,
n_columns = 1,
...) {
if (!inherits(x, "data_plot")) {
x <- data_plot(x, data = data, show_intercept = show_intercept)
}
# check if we have multiple panels
if ((!"Effects" %in% names(x) || length(unique(x$Effects)) <= 1L) &&
(!"Component" %in% names(x) || length(unique(x$Component)) <= 1L)) {
n_columns <- NULL
}
# get labels
labels <- .clean_parameter_names(x$y, grid = !is.null(n_columns))
insight::check_if_installed("ggridges")
p <- ggplot(
as.data.frame(x),
aes(
x = .data$x,
y = .data$y,
height = .data$height,
group = .data$y,
fill = .data$fill
)
) +
ggridges::geom_ridgeline_gradient() +
add_plot_attributes(x)
# Show
if (show_zero) {
p <- p + geom_vline(xintercept = 0, linetype = "dotted")
}
if (!show_title) {
p <- p + ggtitle("")
}
if (length(unique(x$y)) == 1 && is.numeric(x$y)) {
p <- p + scale_y_continuous(breaks = NULL, labels = NULL)
} else {
p <- p + scale_y_discrete(labels = labels)
}
if (!is.null(n_columns)) {
if ("Component" %in% names(x) && "Effects" %in% names(x)) {
p <- p + facet_wrap(~ Effects + Component, scales = "free", ncol = n_columns)
} else if ("Effects" %in% names(x)) {
p <- p + facet_wrap(~Effects, scales = "free", ncol = n_columns)
} else if ("Component" %in% names(x)) {
p <- p + facet_wrap(~Component, scales = "free", ncol = n_columns)
}
}
p + scale_fill_flat(reverse = TRUE)
}
#' @export
plot.see_eti <- plot.see_hdi
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.