#' score_theme
#'
#' A helper utility to score a collection of forecasts efficiently
#' for challenges hosting submitted forecasts on S3 buckets.
#' Scores are automatically streamed to an "scores" bucket in parquet format.
#' A provenance bucket is used to allow function to skip forecast-target
#' combinations that have already been scored.
#'
#' @param theme which theme should be scored?
#' @param s3_forecasts a connection from [arrow::s3_bucket]
#' @param s3_targets a connection from [arrow::s3_bucket]
#' @param s3_scores a connection from [arrow::s3_bucket] where scores will be written.
#' This connection requires write access, e.g. by specifying
# AWS_ACCESS_KEY_ID & AWS_SECRET_ACCESS_KEY env vars.
#' @param s3_prov a connection from [arrow::s3_bucket]
#' @param local_prov path to local csv file which will be used to
#' store provenance until theme is finished scoring.
#' @param endpoint endpoint must be passed explicitly for s3_forecast bucket
#' @param s3_inv parquet-based S3 inventory of forecast filepaths
#' @export
score_theme <- function(theme,
s3_forecasts,
s3_targets,
s3_scores,
s3_prov,
local_prov = paste0(theme, "-scoring-prov.csv"),
endpoint = "data.ecoforecast.org",
s3_inv = arrow::s3_bucket("neon4cast-inventory",
endpoint_override = endpoint)
){
prov_download(s3_prov, local_prov)
prov_df <- readr::read_csv(local_prov, col_types = "cc")
on.exit(prov_upload(s3_prov, local_prov))
s3_scores_path <- s3_scores$path(glue::glue("parquet/{theme}", theme=theme))
bucket <- "neon4cast-forecasts/"
timing <- bench::bench_time({
target <- get_target(theme, s3_targets)
grouping <- get_grouping(s3_inv, theme, collapse=TRUE, endpoint=endpoint)
pb <- progress::progress_bar$new(format=
glue::glue(" scoring {theme} [:bar] :percent in :elapsed, eta: :eta"),
total = nrow(grouping), clear = FALSE, width= 80)
parallel::mclapply(seq_along(grouping[[1]]), score_group,
grouping, bucket, target, prov_df,
local_prov, s3_scores_path, pb, theme,
endpoint)
})
## now sync prov back to S3 -- overwrites
prov_upload(s3_prov, local_prov)
timing
}
# ex <- score_group(1, grouping, fc, target, prov_df, local_prov, s3_scores_path, pb)
score_group <- function(i, grouping,
bucket, target, prov_df, local_prov,
s3_scores_path, pb, theme, endpoint) {
pb$tick()
group <- grouping[i,]
ref <- lubridate::as_datetime(group$date)
# NOTE: we cannot 'prefilter' grouping by prov, since once we have tg
# we want to use it to score, not access it twice...
tg <- target |>
filter(datetime >= ref, datetime < ref+lubridate::days(1))
id <- rlang::hash(list(grouping[i, c("model_id", "date")], tg))
new_id <- rlang::hash(list(group, tg))
if ( !(prov_has(id, prov_df, "prov") ||
prov_has(new_id, prov_df, "new_id")) )
{
fc <- get_fcst_arrow(endpoint, bucket, theme, group)
fc |>
filter(!is.na(family)) |> #hhhmmmm? what should we be doing about these forecasts?
crps_logs_score(tg) |>
mutate(date = group$date) |>
arrow::write_dataset(s3_scores_path,
partitioning = c("model_id", "date"))
prov_add(new_id, local_prov)
}
}
get_grouping <- function(s3_inv,
theme,
collapse=TRUE,
endpoint="data.ecoforecast.org") {
groups <- arrow::open_dataset(s3_inv$path("neon4cast-forecasts")) |>
dplyr::filter(...1 == "parquet", ...2 == {theme}) |>
dplyr::select(model_id = ...3, reference_datetime = ...4, date = ...5) |>
dplyr::mutate(model_id = gsub("model_id=", "", model_id),
reference_datetime =
gsub("reference_datetime=", "", reference_datetime),
date = gsub("date=", "", date)) |>
dplyr::collect()
if(!collapse)
groups <- groups |>
mutate(s3 = paste0("s3://neon4cast-forecasts/parquet/", theme,
"/model_id=", model_id,
"/reference_datetime=",reference_datetime,
"/date=", date, "/part-0.parquet",
"?endpoint_override=", endpoint),
https = paste0("https://", endpoint,
"/neon4cast-forecasts/parquet/", theme,
"/model_id=", model_id,
"/reference_datetime=",reference_datetime,
"/date=", date, "/part-0.parquet"),
)
if(!collapse) return(groups)
# otherwise collapse down by reference_datetime
groups |>
group_by(model_id, date) |>
dplyr::summarise(reference_datetime =
paste(reference_datetime, collapse=", "),
.groups = "drop")
}
get_target <- function(theme, s3) {
options("readr.show_progress"=FALSE)
key <- glue::glue("{theme}/{theme}-targets.csv.gz")
read4cast::read_forecast(key, s3 = s3)
}
## NOTE cannot append to *remote* S3 sources, so prov_has / prov_add must work local and sync.
prov_has <- function(id, prov, colname="prov") {
## would be fast even with remote file
prov |> dplyr::filter(.data[[colname]] == id) |> nrow() >= 1
}
prov_add <- function(id, local_prov = "scoring_provenance.csv") {
new_prov <- dplyr::tibble(prov=NA_integer_, new_id=id)
## Can never append to S3-hosted objects
readr::write_csv(new_prov, local_prov, append=TRUE)
}
prov_download <- function(s3_prov, local_prov = "scoring_provenance.csv") {
if(! (local_prov %in% s3_prov$ls()) ) {
arrow::write_csv_arrow(dplyr::tibble(prov=NA), local_prov)
return(NULL)
}
path <- s3_prov$path(local_prov)
prov <- arrow::read_csv_arrow(path)
arrow::write_csv_arrow(prov, local_prov)
invisible(local_prov)
}
prov_upload <- function(s3_prov, local_prov = "scoring_provenance.csv") {
prov <- arrow::open_dataset(local_prov, format="csv",
schema = arrow::schema(prov = arrow::string(),
new_id = arrow::string()))
path <- s3_prov$path(local_prov)
prov <- arrow::write_csv_arrow(prov, path)
}
## arrow method is a bit slower?
get_fcst_arrow <- function(endpoint, bucket, theme, group) {
paste0("s3://", fs::path(bucket, "parquet/", theme),
"/model_id=", group$model_id, "/reference_datetime=",
utils::URLencode(utils::URLdecode(
stringi::stri_split_fixed(group$reference_datetime, ", ")[[1]])),
"/date=", group$date, "/part-0.parquet",
"?endpoint_override=", endpoint) |>
arrow::open_dataset(schema=forecast_schema()) |>
dplyr::mutate(file = add_filename(),
model_id =
gsub(".*model_id=(\\w+).*", "\\1", file),
reference_datetime =
gsub(".*reference_datetime=(\\d{4}-\\d{2}-\\d{2}).*",
"\\1", file),
date =
gsub(".*date=(\\d{4}-\\d{2}-\\d{2}).*", "\\1", file)
) |>
dplyr::filter(!is.na(family)) |>
dplyr::collect()
}
globalVariables(c("...1", "...2", "...3", "...4", "...5",
"add_filename", "theme", "n"),
package="score4cast")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.