devtools::load_all()
library(arrow)
library(dplyr)
ignore_sigpipe()
# efi_update_inventory()
theme <- "aquatics"
endpoint <- "data.ecoforecast.org"
s3_inv <- arrow::s3_bucket("neon4cast-inventory",
endpoint_override = endpoint, anonymous=TRUE)
## Detect cases where we have model_id / reference_datetime / date in forecast but not in scores
fcst_groups <- arrow::open_dataset(s3_inv$path("neon4cast-forecasts")) |>
dplyr::filter(...1 == "parquet", ...2 == {theme}) |>
dplyr::select(model_id = ...3, reference_datetime = ...4, date = ...5) |>
dplyr::mutate(model_id = gsub("model_id=", "", model_id),
reference_datetime =
gsub("reference_datetime=", "", reference_datetime),
date = gsub("date=", "", date)) |>
dplyr::collect()
s3_scores <- arrow::s3_bucket("neon4cast-scores", endpoint_override = endpoint)
s3_ds <- arrow::open_dataset(s3_scores)
scored_groups <- s3_ds |>
dplyr::select(model_id, reference_datetime, date) |>
dplyr::distinct() |> dplyr::collect()
grouping <- anti_join(fcst_groups, scored_groups) |>
group_by(model_id, date)
grouping <- grouping |> mutate(s3 = paste0("s3://neon4cast-forecasts/parquet/", theme,
"/model_id=", model_id,
"/reference_datetime=",reference_datetime,
"/date=", date, "/part-0.parquet",
"?endpoint_override=", endpoint))
#grouping_standard <- grouping |>
# dplyr::summarise(reference_datetime =
# paste(reference_datetime, collapse=", "),
# .groups = "drop")
fc |>
filter(!is.na(family)) |> #hhhmmmm? what should we be doing about these forecasts?
crps_logs_score(tg) |>
mutate(date = as.Date(datetime)) |>
arrow::write_dataset(s3_scores_path,
partitioning = c("model_id",
"date"))
endpoint = "data.ecoforecast.org"
s3_forecasts <- arrow::s3_bucket("neon4cast-forecasts", endpoint_override = endpoint)
s3_targets <- arrow::s3_bucket("neon4cast-targets", endpoint_override = endpoint)
s3_prov <- arrow::s3_bucket("neon4cast-prov", endpoint_override = endpoint)
local_prov = paste0(theme, "-scoring-prov.csv")
prov_download(s3_prov, local_prov)
prov_df <- readr::read_csv(local_prov, col_types = "cc")
s3_scores_path <- s3_scores$path(glue::glue("parquet/{theme}", theme=theme))
target <- get_target(theme, s3_targets)
pb <- progress::progress_bar$new(
format = glue::glue(" scoring {theme} [:bar] :percent in :elapsed,",
" eta: :eta"),
total = nrow(grouping),
clear = FALSE, width= 80)
for (i in seq_along(grouping[[1]])) {
#furrr::future_map(1:n, function(i) {
## this is the score_group() function:
pb$tick()
group <- grouping[i,]
ref <- lubridate::as_datetime(group$date)
# NOTE: we cannot 'prefilter' grouping by prov, since once we have tg
# we want to use it to score, not access it twice...
tg <- target |>
filter(datetime >= ref, datetime < ref+lubridate::days(1))
## ID changes only if target has changed between dates for this group
id <- rlang::hash(list(grouping[i, c("model_id", "date")], tg))
new_id <- rlang::hash(list(group, tg))
if (! (prov_has(id, prov_df, "prov") ||
prov_has(new_id, prov_df, "new_id"))
) {
fc <- get_fcst_arrow(endpoint, "neon4cast-forecasts", theme, group)
fc |>
filter(!is.na(family)) |> #hhhmmmm? what should we be doing about these forecasts?
crps_logs_score(tg) |>
mutate(date = as.Date(datetime)) |>
arrow::write_dataset(s3_scores_path,
partitioning = c("model_id",
"date"))
prov_add(new_id, local_prov)
}
}
prov_upload(s3_prov, local_prov)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.