library(covid.german.forecasts)
library(googledrive)
library(googlesheets4)
library(dplyr)
library(purrr)
library(data.table)
library(lubridate)
library(here)
library(tidyr)
# Google sheets authentification -----------------------------------------------
google_auth()
spread_sheet <- "1nOy3BfHoIKCHD4dfOtJaz4QMxbuhmEvsWzsrSMx_grI"
identification_sheet <- "1GJ5BNcN1UfAlZSkYwgr1-AxgsVA2wtwQ9bRwZ64ZXRQ"
# setup ------------------------------------------------------------------------
submission_date <- latest_weekday()
median_ensemble <- FALSE
# grid of quantiles to obtain / submit from forecasts
quantile_grid <- c(0.01, 0.025, seq(0.05, 0.95, 0.05), 0.975, 0.99)
# load data from Google Sheets -------------------------------------------------
# load identification
ids <- try_and_wait(read_sheet(ss = identification_sheet, sheet = "ids"))
# load forecasts
forecasts <- try_and_wait(read_sheet(ss = spread_sheet))
delete_data <- TRUE
if (delete_data) {
# add forecasts to backup sheet
try_and_wait(
sheet_append(
ss = spread_sheet, sheet = "oldforecasts", data = forecasts
))
# delete data from sheet
cols <- data.frame(matrix(ncol = ncol(forecasts), nrow = 0))
names(cols) <- names(forecasts)
try_and_wait(
write_sheet(
data = cols, ss = spread_sheet, sheet = "predictions"
))
}
# obtain raw and filtered forecasts, save raw forecasts-------------------------
raw_forecasts <- forecasts %>%
dplyr::filter(location_name %in% c("Germany", "Poland")) %>%
mutate(location = ifelse(location_name == "Germany", "GM", "PL"))
# use only the latest forecast from a given forecaster
filtered_forecasts <- raw_forecasts %>%
# interesting question whether or not to include foracast_type here.
# if someone reconnecs and then accidentally resubmits under a different
# condition should that be removed or not?
group_by(forecaster_id, location, target_type) %>%
dplyr::filter(forecast_time == max(forecast_time)) %>%
ungroup()
# replace forecast duration with exact data about forecast date and time
# define function to do this for raw and filtered forecasts
replace_date_and_time <- function(forecasts) {
forecast_times <- forecasts %>%
group_by(forecaster_id, location, target_type) %>%
summarise(forecast_time = unique(forecast_time)) %>%
ungroup() %>%
arrange(forecaster_id, forecast_time) %>%
group_by(forecaster_id) %>%
mutate(forecast_duration = c(NA, diff(forecast_time))) %>%
ungroup()
forecasts <- inner_join(
forecasts, forecast_times,
by = c("forecaster_id", "location", "target_type", "forecast_time")) %>%
mutate(forecast_week = epiweek(forecast_date),
target_end_date = as.Date(target_end_date)) %>%
select(-forecast_time)
return(forecasts)
}
# replace time with duration and date with epiweek
raw_forecasts <- replace_date_and_time(raw_forecasts)
filtered_forecasts <- replace_date_and_time(filtered_forecasts)
check_dir(here("crowd-forecast", "raw-forecast-data"))
# write raw forecasts
fwrite(raw_forecasts %>% select(-board_name),
here("crowd-forecast", "raw-forecast-data",
paste0(submission_date, "-raw-forecasts.csv")))
# obtain quantiles from forecasts ----------------------------------------------
# define function that returns quantiles depending on condition and distribution
calculate_quantiles <- function(quantile_grid, median, width, forecast_type,
distribution, lower_90, upper_90) {
if (distribution == "log-normal") {
values <- list(exp(qnorm(
quantile_grid, mean = log(as.numeric(median)), sd = as.numeric(width)
)))
} else if (distribution == "normal") {
values <- list((qnorm(
quantile_grid, mean = (as.numeric(median)), sd = as.numeric(width)
)))
} else if (distribution == "cubic-normal") {
values <- list((qnorm(quantile_grid,
mean = (as.numeric(median) ^ (1 / 3)), sd = as.numeric(width))
) ^ 3)
} else if (distribution == "fifth-power-normal") {
values <- list((qnorm(quantile_grid,
mean = (as.numeric(median) ^ (1 / 5)), sd = as.numeric(width)
)) ^ 5)
} else if (distribution == "seventh-power-normal") {
values <- list((qnorm(quantile_grid,
mean = (as.numeric(median) ^ (1 / 7)), sd = as.numeric(width))
) ^ 7)
}
return(values)
}
forecast_quantiles <- filtered_forecasts %>%
# disregard quantile forecasts this week
rowwise() %>%
mutate(quantile = list(quantile_grid),
value = calculate_quantiles(quantile_grid, median, width,
forecast_type, distribution, lower_90, upper_90)) %>%
unnest(cols = c(quantile, value)) %>%
ungroup() %>%
mutate(type = ifelse(target_type == "cases", "case", "death"),
target = paste0(horizon, " wk ahead inc ", type),
type = "quantile")
# save forecasts in quantile-format
fwrite(forecast_quantiles %>% mutate(submission_date = submission_date),
here("crowd-forecast", "processed-forecast-data",
paste0(submission_date, "-processed-forecasts.csv")))
# omit forecasters who haven't forecasted at least two targets
forecasters_to_omit <- forecast_quantiles %>%
select(forecaster_id, location, target_type) %>%
unique() %>%
group_by(forecaster_id) %>%
mutate(n = n(), flag = n >= 2) %>%
dplyr::filter(!flag) %>%
pull(forecaster_id) %>%
unique()
forecast_quantiles <- forecast_quantiles %>%
dplyr::filter(!(forecaster_id %in% forecasters_to_omit))
if (median_ensemble) {
# make median ensemble
forecast_inc <- forecast_quantiles %>%
mutate(target_end_date = as.Date(target_end_date)) %>%
group_by(location, location_name, target, target_type,
quantile, horizon, target_end_date) %>%
summarise(value = median(value)) %>%
ungroup() %>%
select(target, target_end_date, location, target_type, type,
quantile, value, location_name)
} else {
# make mean ensemble
forecast_inc <- forecast_quantiles %>%
mutate(target_end_date = as.Date(target_end_date),
type = "quantile") %>%
group_by(location, location_name, target, target_type, type,
quantile, horizon, target_end_date) %>%
summarise(value = mean(value)) %>%
ungroup() %>%
select(target, target_end_date, location, type,
target_type, quantile, value, location_name)
}
# add point forecast
forecast_inc <- bind_rows(forecast_inc,
forecast_inc %>%
dplyr::filter(quantile == 0.5) %>%
mutate(type = "point",
quantile = NA))
# add cumulative forecasts -----------------------------------------------------
# get latest cumulative forecast
first_forecast_date <- forecasts %>%
pull(target_end_date) %>%
as.Date() %>%
unique() %>%
min(na.rm = TRUE)
deaths <-
get_truth_data(dir = here("data-raw"), range = "weekly",
type = "cumulative", target = "deaths",
locs = c("GM", "PL")) %>%
group_by(location) %>%
dplyr::filter(target_end_date == as.Date(first_forecast_date - 7)) %>%
rename(case = type)
cases <-
get_truth_data(dir = here("data-raw"), range = "weekly",
type = "cumulative", target = "cases",
locs = c("GM", "PL")) %>%
group_by(location) %>%
dplyr::filter(target_end_date == as.Date(first_forecast_date - 7)) %>%
rename(case = type)
last_obs <- bind_rows(deaths, cases) %>%
select(location, value, case) %>%
rename(last_value = value)
# make cumulative
forecast_cum <- forecast_inc %>%
mutate(case = ifelse(grepl("case", target), "cases", "deaths")) %>%
group_by(location, quantile, case) %>%
mutate(value = cumsum(value),
target = gsub("inc", "cum", target)) %>%
ungroup() %>%
# add last observed value
inner_join(last_obs) %>%
mutate(value = value + last_value) %>%
select(-last_value, -case, -target_type)
forecast_submission <- bind_rows(forecast_inc, forecast_cum) %>%
mutate(forecast_date = submission_date) %>%
select(-target_type)
# write submission files -------------------------------------------------------
check_dir(here("submissions", "crowd-forecasts", submission_date))
forecast_submission %>%
dplyr::filter(location_name %in% "Germany",
grepl("death", target)) %>%
fwrite(here("submissions", "crowd-forecasts", submission_date,
paste0(submission_date, "-Germany-epiforecasts-EpiExpert.csv")))
forecast_submission %>%
dplyr::filter(location_name %in% "Germany",
grepl("case", target)) %>%
fwrite(here("submissions", "crowd-forecasts", submission_date,
paste0(submission_date, "-Germany-epiforecasts-EpiExpert-case.csv")))
forecast_submission %>%
dplyr::filter(location_name %in% "Poland",
grepl("death", target)) %>%
fwrite(here("submissions", "crowd-forecasts", submission_date,
paste0(submission_date, "-Poland-epiforecasts-EpiExpert.csv")))
forecast_submission %>%
dplyr::filter(location_name %in% "Poland",
grepl("case", target)) %>%
fwrite(here("submissions", "crowd-forecasts", submission_date,
paste0(submission_date, "-Poland-epiforecasts-EpiExpert-case.csv")))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.