# Copyright 2021 Observational Health Data Sciences and Informatics
#
# This file is part of CohortMethod
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#' Get the cohort data from the server
#'
#' @description
#' This function executes a large set of SQL statements against the database in OMOP CDM format to
#' extract the data needed to perform the analysis.
#'
#' @details
#' Based on the arguments, the treatment and comparator cohorts are retrieved, as well as outcomes
#' occurring in exposed subjects. The treatment and comparator cohorts can be identified using the
#' DRUG_ERA table, or through user-defined cohorts in a cohort table either inside the CDM schema or
#' in a separate schema. Similarly, outcomes are identified using the CONDITION_ERA table or through
#' user-defined cohorts in a cohort table either inside the CDM schema or in a separate schema.
#' Covariates are automatically extracted from the appropriate tables within the CDM.
#'
#' **Important**: The target and comparator drug must not be included in the covariates, including any descendant
#' concepts. You will need to manually add the drugs and descendants to the `excludedCovariateConceptIds`
#' of the `covariateSettings` argument.
#'
#' The `removeduplicateSubjects` argument can have one of the following values:
#'
#' - `"keep all"`: Do not remove subjects that appear in both target and comparator cohort
#' - `"keep first"`: When a subjects appear in both target and comparator cohort, only keep whichever cohort is first in time.
#' - `"remove all"`: Remove subjects that appear in both target and comparator cohort completely from the analysis."
#'
#' @param connectionDetails An R object of type `connectionDetails` created using the
#' [DatabaseConnector::createConnectionDetails()] function.
#' @param cdmDatabaseSchema The name of the database schema that contains the OMOP CDM
#' instance. Requires read permissions to this database. On SQL
#' Server, this should specify both the database and the schema,
#' so for example 'cdm_instance.dbo'.
#' @param oracleTempSchema DEPRECATED: use `tempEmulationSchema` instead.
#' @param tempEmulationSchema Some database platforms like Oracle and Impala do not truly support temp tables. To
#' emulate temp tables, provide a schema with write privileges where temp tables
#' can be created.
#' @param targetId A unique identifier to define the target cohort. If
#' exposureTable = DRUG_ERA, targetId is a concept ID and all
#' descendant concepts within that concept ID will be used to
#' define the cohort. If exposureTable <> DRUG_ERA, targetId is
#' used to select the COHORT_DEFINITION_ID in the cohort-like table.
#' @param comparatorId A unique identifier to define the comparator cohort. If
#' exposureTable = DRUG_ERA, comparatorId is a concept ID and all
#' descendant concepts within that concept ID will be used to
#' define the cohort. If exposureTable <> DRUG_ERA, comparatorId
#' is used to select the COHORT_DEFINITION_ID in the cohort-like
#' table.
#' @param outcomeIds A list of cohort IDs used to define outcomes.
#' @param studyStartDate A calendar date specifying the minimum date that a cohort index
#' date can appear. Date format is 'yyyymmdd'.
#' @param studyEndDate A calendar date specifying the maximum date that a cohort index
#' date can appear. Date format is 'yyyymmdd'. Important: the study
#' end data is also used to truncate risk windows, meaning no
#' outcomes beyond the study end date will be considered.
#' @param exposureDatabaseSchema The name of the database schema that is the location where the
#' exposure data used to define the exposure cohorts is available.
#' @param exposureTable The tablename that contains the exposure cohorts. If
#' exposureTable <> DRUG_ERA, then expectation is `exposureTable` has
#' format of COHORT table: COHORT_DEFINITION_ID, SUBJECT_ID,
#' COHORT_START_DATE, COHORT_END_DATE.
#' @param outcomeDatabaseSchema The name of the database schema that is the location where the
#' data used to define the outcome cohorts is available.
#' @param outcomeTable The tablename that contains the outcome cohorts. If
#' outcomeTable <> CONDITION_OCCURRENCE, then expectation is
#' outcomeTable has format of COHORT table: COHORT_DEFINITION_ID,
#' SUBJECT_ID, COHORT_START_DATE, COHORT_END_DATE.
#' @param cdmVersion Define the OMOP CDM version used: currently supports "5".
#' @param excludeDrugsFromCovariates DEPRECATED: Should the target and comparator drugs (and their descendant
#' concepts) be excluded from the covariates? Note that this will
#' work if the drugs are actually drug concept IDs (and not cohort
#' IDs).
#' @param firstExposureOnly Should only the first exposure per subject be included? Note
#' that this is typically done in the [createStudyPopulation()]
#' function, but can already be done here for efficiency reasons.
#' @param removeDuplicateSubjects Remove subjects that are in both the target and comparator
#' cohort? See details for allowed values.Note that this is typically done in the
#' `createStudyPopulation` function, but can already be done
#' here for efficiency reasons.
#' @param restrictToCommonPeriod Restrict the analysis to the period when both treatments are observed?
#' @param washoutPeriod The minimum required continuous observation time prior to index
#' date for a person to be included in the cohort. Note that this
#' is typically done in the `createStudyPopulation` function,
#' but can already be done here for efficiency reasons.
#' @param maxCohortSize If either the target or the comparator cohort is larger than
#' this number it will be sampled to this size. `maxCohortSize = 0`
#' indicates no maximum size.
#' @param covariateSettings An object of type `covariateSettings` as created using the
#' [FeatureExtraction::createCovariateSettings()] function.
#'
#' @return
#' A [CohortMethodData] object.
#'
#' @export
getDbCohortMethodData <- function(connectionDetails,
cdmDatabaseSchema,
oracleTempSchema = NULL,
tempEmulationSchema = getOption("sqlRenderTempEmulationSchema"),
targetId,
comparatorId,
outcomeIds,
studyStartDate = "",
studyEndDate = "",
exposureDatabaseSchema = cdmDatabaseSchema,
exposureTable = "drug_era",
outcomeDatabaseSchema = cdmDatabaseSchema,
outcomeTable = "condition_occurrence",
cdmVersion = "5",
excludeDrugsFromCovariates = NULL,
firstExposureOnly = FALSE,
removeDuplicateSubjects = FALSE,
restrictToCommonPeriod = FALSE,
washoutPeriod = 0,
maxCohortSize = 0,
covariateSettings) {
if (!is.null(excludeDrugsFromCovariates)) {
warning("The excludeDrugsFromCovariates argument has been deprecated. Please explicitly exclude the drug concepts in the covariate settings")
} else {
excludeDrugsFromCovariates = FALSE
}
if (!is.null(oracleTempSchema) && oracleTempSchema != "") {
warning("The 'oracleTempSchema' argument is deprecated. Use 'tempEmulationSchema' instead.")
tempEmulationSchema <- oracleTempSchema
}
if (is.null(studyStartDate)) {
studyStartDate <- ""
}
if (is.null(studyEndDate)) {
studyEndDate <- ""
}
if (studyStartDate != "" && regexpr("^[12][0-9]{3}[01][0-9][0-3][0-9]$", studyStartDate) == -1)
stop("Study start date must have format YYYYMMDD")
if (studyEndDate != "" && regexpr("^[12][0-9]{3}[01][0-9][0-3][0-9]$", studyEndDate) == -1)
stop("Study end date must have format YYYYMMDD")
if (is.logical(removeDuplicateSubjects)) {
if (removeDuplicateSubjects)
removeDuplicateSubjects <- "remove all"
else
removeDuplicateSubjects <- "keep all"
}
if (!(removeDuplicateSubjects %in% c("keep all", "keep first", "remove all")))
stop("removeDuplicateSubjects should have value \"keep all\", \"keep first\", or \"remove all\".")
ParallelLogger::logTrace("Getting cohort method data for target ID ", targetId, " and comparator ID ", comparatorId)
connection <- DatabaseConnector::connect(connectionDetails)
on.exit(DatabaseConnector::disconnect(connection))
if (excludeDrugsFromCovariates) {
if (exposureTable != "drug_era")
warning("Removing drugs from covariates, but not sure if exposure IDs are valid drug concepts")
sql <- "SELECT descendant_concept_id FROM @cdm_database_schema.concept_ancestor WHERE ancestor_concept_id IN (@target_id, @comparator_id)"
sql <- SqlRender::render(sql = sql,
cdm_database_schema = cdmDatabaseSchema,
target_id = targetId,
comparator_id = comparatorId)
sql <- SqlRender::translate(sql, targetDialect = connectionDetails$dbms)
conceptIds <- DatabaseConnector::querySql(connection, sql, snakeCaseToCamelCase = TRUE)
conceptIds <- conceptIds$descendantConceptId
ParallelLogger::logDebug("Excluding concept Ids from covariates: ", paste(conceptIds, collapse = ", "))
if (is(covariateSettings, "covariateSettings")) {
covariateSettings$excludedCovariateConceptIds <- c(covariateSettings$excludedCovariateConceptIds,
conceptIds)
} else if (is.list(covariateSettings)) {
for (i in 1:length(covariateSettings)) {
covariateSettings[[i]]$excludedCovariateConceptIds <- c(covariateSettings[[i]]$excludedCovariateConceptIds,
conceptIds)
}
}
}
ParallelLogger::logInfo("Constructing target and comparator cohorts")
renderedSql <- SqlRender::loadRenderTranslateSql("CreateCohorts.sql",
packageName = "CohortMethod",
dbms = connectionDetails$dbms,
tempEmulationSchema = tempEmulationSchema,
cdm_database_schema = cdmDatabaseSchema,
exposure_database_schema = exposureDatabaseSchema,
exposure_table = exposureTable,
cdm_version = cdmVersion,
target_id = targetId,
comparator_id = comparatorId,
study_start_date = studyStartDate,
study_end_date = studyEndDate,
first_only = firstExposureOnly,
remove_duplicate_subjects = removeDuplicateSubjects,
washout_period = washoutPeriod,
restrict_to_common_period = restrictToCommonPeriod)
DatabaseConnector::executeSql(connection, renderedSql)
sampled <- FALSE
if (maxCohortSize != 0) {
renderedSql <- SqlRender::loadRenderTranslateSql("CountCohorts.sql",
packageName = "CohortMethod",
dbms = connectionDetails$dbms,
tempEmulationSchema = tempEmulationSchema,
cdm_version = cdmVersion,
target_id = targetId)
counts <- DatabaseConnector::querySql(connection, renderedSql, snakeCaseToCamelCase = TRUE)
ParallelLogger::logDebug("Pre-sample total row count is ", sum(counts$rowCount))
preSampleCounts <- dplyr::tibble(dummy = 0)
idx <- which(counts$treatment == 1)
if (length(idx) == 0) {
preSampleCounts$targetPersons = 0
preSampleCounts$targetExposures = 0
} else {
preSampleCounts$targetPersons = counts$personCount[idx]
preSampleCounts$targetExposures = counts$rowCount[idx]
}
idx <- which(counts$treatment == 0)
if (length(idx) == 0) {
preSampleCounts$comparatorPersons = 0
preSampleCounts$comparatorExposures = 0
} else {
preSampleCounts$comparatorPersons = counts$personCount[idx]
preSampleCounts$comparatorExposures = counts$rowCount[idx]
}
preSampleCounts$dummy <- NULL
if (preSampleCounts$targetExposures > maxCohortSize) {
ParallelLogger::logInfo("Downsampling target cohort from ", preSampleCounts$targetExposures, " to ", maxCohortSize)
sampled <- TRUE
}
if (preSampleCounts$comparatorExposures > maxCohortSize) {
ParallelLogger::logInfo("Downsampling comparator cohort from ", preSampleCounts$comparatorExposures, " to ", maxCohortSize)
sampled <- TRUE
}
if (sampled) {
renderedSql <- SqlRender::loadRenderTranslateSql("SampleCohorts.sql",
packageName = "CohortMethod",
dbms = connectionDetails$dbms,
tempEmulationSchema = tempEmulationSchema,
cdm_version = cdmVersion,
max_cohort_size = maxCohortSize)
DatabaseConnector::executeSql(connection, renderedSql)
}
}
ParallelLogger::logInfo("Fetching cohorts from server")
start <- Sys.time()
cohortSql <- SqlRender::loadRenderTranslateSql("GetCohorts.sql",
packageName = "CohortMethod",
dbms = connectionDetails$dbms,
tempEmulationSchema = tempEmulationSchema,
cdm_version = cdmVersion,
target_id = targetId,
sampled = sampled)
cohorts <- DatabaseConnector::querySql(connection, cohortSql, snakeCaseToCamelCase = TRUE)
ParallelLogger::logDebug("Fetched cohort total rows in target is ", sum(cohorts$treatment), ", total rows in comparator is ", sum(!cohorts$treatment))
if (nrow(cohorts) == 0) {
warning("Target and comparator cohorts are empty")
} else if (sum(cohorts$treatment == 1) == 0) {
warning("Target cohort is empty")
} else if (sum(cohorts$treatment == 0) == 0) {
warning("Comparator cohort is empty")
}
metaData <- list(targetId = targetId,
comparatorId = comparatorId,
studyStartDate = studyStartDate,
studyEndDate = studyEndDate)
if (firstExposureOnly || removeDuplicateSubjects != "keep all" || washoutPeriod != 0) {
rawCountSql <- SqlRender::loadRenderTranslateSql("CountOverallExposedPopulation.sql",
packageName = "CohortMethod",
dbms = connectionDetails$dbms,
tempEmulationSchema = tempEmulationSchema,
cdm_database_schema = cdmDatabaseSchema,
exposure_database_schema = exposureDatabaseSchema,
exposure_table = tolower(exposureTable),
cdm_version = cdmVersion,
target_id = targetId,
comparator_id = comparatorId,
study_start_date = studyStartDate,
study_end_date = studyEndDate)
rawCount <- DatabaseConnector::querySql(connection, rawCountSql, snakeCaseToCamelCase = TRUE)
if (nrow(rawCount) == 0) {
counts <- dplyr::tibble(description = "Original cohorts",
targetPersons = 0,
comparatorPersons = 0,
targetExposures = 0,
comparatorExposures = 0)
} else {
counts <- dplyr::tibble(description = "Original cohorts",
targetPersons = rawCount$exposedCount[rawCount$treatment == 1],
comparatorPersons = rawCount$exposedCount[rawCount$treatment == 0],
targetExposures = rawCount$exposureCount[rawCount$treatment == 1],
comparatorExposures = rawCount$exposureCount[rawCount$treatment == 0])
}
metaData$attrition <- counts
label <- c()
if (firstExposureOnly) {
label <- c(label, "first exp. only")
}
if (removeDuplicateSubjects == "remove all") {
label <- c(label, "removed subs in both cohorts")
} else if (removeDuplicateSubjects == "keep first") {
label <- c(label, "first cohort only")
}
if (restrictToCommonPeriod) {
label <- c(label, "restrict to common period")
}
if (washoutPeriod) {
label <- c(label, paste(washoutPeriod, "days of obs. prior"))
}
label <- paste(label, collapse = " & ")
substring(label, 1) <- toupper(substring(label, 1, 1))
if (sampled) {
preSampleCounts$description <- label
metaData$attrition <- rbind(metaData$attrition, preSampleCounts)
metaData$attrition <- rbind(metaData$attrition, getCounts(cohorts, "Random sample"))
} else {
metaData$attrition <- rbind(metaData$attrition, getCounts(cohorts, label))
}
} else {
if (sampled) {
preSampleCounts$description <- "Original cohorts"
metaData$attrition <- preSampleCounts
metaData$attrition <- rbind(metaData$attrition, getCounts(cohorts, "Random sample"))
} else {
metaData$attrition <- getCounts(cohorts, "Original cohorts")
}
}
delta <- Sys.time() - start
ParallelLogger::logInfo("Fetching cohorts took ", signif(delta, 3), " ", attr(delta, "units"))
if (sampled) {
cohortTable <- "#cohort_sample"
} else {
cohortTable <- "#cohort_person"
}
covariateData <- FeatureExtraction::getDbCovariateData(connection = connection,
oracleTempSchema = tempEmulationSchema,
cdmDatabaseSchema = cdmDatabaseSchema,
cdmVersion = cdmVersion,
cohortTable = cohortTable,
cohortTableIsTemp = TRUE,
rowIdField = "row_id",
covariateSettings = covariateSettings)
ParallelLogger::logDebug("Fetched covariates total count is ", covariateData$covariates %>% count() %>% pull())
ParallelLogger::logInfo("Fetching outcomes from server")
start <- Sys.time()
outcomeSql <- SqlRender::loadRenderTranslateSql("GetOutcomes.sql",
packageName = "CohortMethod",
dbms = connectionDetails$dbms,
tempEmulationSchema = tempEmulationSchema,
cdm_database_schema = cdmDatabaseSchema,
outcome_database_schema = outcomeDatabaseSchema,
outcome_table = outcomeTable,
outcome_ids = outcomeIds,
cdm_version = cdmVersion,
sampled = sampled)
outcomes <- DatabaseConnector::querySql(connection, outcomeSql, snakeCaseToCamelCase = TRUE)
metaData$outcomeIds = outcomeIds
delta <- Sys.time() - start
ParallelLogger::logInfo("Fetching outcomes took ", signif(delta, 3), " ", attr(delta, "units"))
ParallelLogger::logDebug("Fetched outcomes total count is ", nrow(outcomes))
# Remove temp tables:
renderedSql <- SqlRender::loadRenderTranslateSql("RemoveCohortTempTables.sql",
packageName = "CohortMethod",
dbms = connectionDetails$dbms,
tempEmulationSchema = tempEmulationSchema,
sampled = sampled)
DatabaseConnector::executeSql(connection,
renderedSql,
progressBar = FALSE,
reportOverallTime = FALSE)
covariateData$cohorts <- cohorts
covariateData$outcomes <- outcomes
attr(covariateData, "metaData") <- append(attr(covariateData, "metaData"), metaData)
class(covariateData) <- "CohortMethodData"
attr(class(covariateData), "package") <- "CohortMethod"
return(covariateData)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.