server <- function(input, output, session) {
output$city <- renderPlot({
if (input$country != "United States") {
covid_city %>%
dplyr::filter(country == input$country) %>%
pivot_longer(cols = c("driving", "walking","transit"), names_to = "index", values_to = "value") %>%
ggplot(aes(date, value, color = factor(index))) +
geom_line(lwd = 1.3) +
theme(
legend.position = "bottom",
legend.title = element_blank(),
legend.text = element_text(size = 21)
) +
guides(colour = guide_legend(override.aes = list(size=4))) +
scale_x_date(labels = date_format("%B"), breaks='2 month') +
labs(
title = "Apple Mobility Reports",
subtitle = "Notice for some countries the significant increase in walking in contrast to the use of public transport.\n",
caption = "Data reflect requests for directions in Apple Maps",
x = "Date",
y = "Index",
color = "Index"
) +
scale_color_colorblind(name = "Index", labels = c("Driving", "Walking", "Transit")) +
facet_wrap(~city)
}
else {
covid_city %>%
dplyr::filter(country == input$country) %>%
filter(city %in% c("New York", "Los Angeles", "Chicago", "Houston", "Phoenix", "Philadelphia", "San Antonio", "Dallas")) %>%
pivot_longer(cols = c("driving", "walking","transit"), names_to = "index", values_to = "value") %>%
ggplot(aes(date, value, color = factor(index))) +
geom_line(lwd = 1.3) +
theme(
legend.position = "bottom",
legend.title = element_blank(),
legend.text = element_text(size = 21)
) +
guides(colour = guide_legend(override.aes = list(size=4))) +
scale_x_date(labels = date_format("%B"), breaks='2 month') +
labs(
title = "Apple Mobility Reports",
subtitle = "Notice for some countries the significant increase in walking in contrast to the use of public transport.\n",
caption = "Data reflect requests for directions in Apple Maps",
x = "Date",
y = "Index",
color = "Index"
) +
scale_color_colorblind(name = "Index", labels = c("Driving", "Walking", "Transit")) +
facet_wrap(~city)
}
})
output$measure <- renderPlotly({
p <- ggplotly(source = "all_measures",
covid_measures %>%
filter(country == input$meas_country) %>%
ggplot(aes(date, effect, color = measure)) +
geom_point(size = 2) +
scale_color_colorblind() +
theme_classic() +
theme(
panel.background = element_rect(fill = "#bad2e3"),
plot.background = element_rect(fill = "#bad2e3"),
plot.title.position = "plot",
plot.title = element_text(size = 16, color = "navy",face = "normal", margin = unit(c(0, 0, 0.6, 0), "cm")),
legend.background = element_rect(fill = "#bad2e3"),
strip.text = element_text(size = 14),
axis.title = element_text( size = 15, face = "bold" ),
panel.spacing = unit(2, "lines"),
axis.title.x = element_blank(),
axis.title.y = element_text(size = 14, color = "black"),
axis.line.x = element_line(linetype = "dashed", size = 2),
axis.line.y = element_line(linetype = "dashed", size = 2),
axis.text.x = element_text(size = 11, color = "black"),
axis.text.y = element_text(size = 19, color = "black"),
strip.background = element_rect(
color="grey91", fill="#9fb6cd", size=1.5, linetype="solid"),
legend.position = "bottom",
legend.title = element_blank(),
legend.text = element_text(size = 15)
) +
guides(colour = guide_legend(override.aes = list(size=4))) +
scale_x_date(labels = date_format("%B"), breaks='2 month') +
scale_color_colorblind(name = "Index", labels = c("Social-Economic", "Lockdown", "Movement Restrictions", "Public Health", "Social Distancing")) +
labs(
title = "Number of Measures by Category and when they were taken",
subtitle = "Each time the line moves upwards a new measure was taken, whereas\n each time the line moves downwards an old measure was uplifted.",
caption = "Data from covid_all19 package",
x = "Date",
y = "Number of measures",
color = "Measure"
)
)
p %>% onRender(js)
})
output$legendItem <- renderText({
d <- input$trace
if (is.null(d)) paste("Click one of the choices found at the legend of the above figure to select a category" ) else paste ("You have selected:", d)
})
output$restrictions <- renderPlotly({
d <- input$trace
if (is.null(d)) return(NULL)
cases_covid %>%
filter(category == d,
country == input$meas_country) %>%
plot_ly(x = ~date_implemented,
y = ~measure,
color = ~log_type,
type = 'scatter', mode = 'markers', colors = c("darkred", "darkblue"),
size = 1, symbol = ~log_type, symbols = c("circle-x", "diamond-wide"),
hoverinfo = 'text',
text = ~paste('</br> Comment: ', comments)) %>%
layout(paper_bgcolor='#bad2e3',
plot_bgcolor="#bad2e3",
title = "Occurence of Measures by Category",
xaxis = list(title = "Implementation Date"),
yaxis = list(title = ""),
titlefont = list(
size = 30,
color = 'navy'),
font = list(
size = 20),
margin = 10
)
})
output$google <- renderPlot({
covid_all %>%
select(c("country","date"), contains("gcmr")) %>%
filter(country == input$google_country) %>%
pivot_longer(cols = contains("gcmr"), names_to = "index", values_to = "score") %>%
mutate(index = str_replace(string = index, pattern = c("gcmr"), replacement = "")) %>%
mutate(index = str_replace(string = index, pattern = c("_"), replacement = " ")) %>%
mutate(index = str_replace(string = index, pattern = c("_"), replacement = "-")) %>%
mutate(index = str_to_title(index)) %>%
ggplot(aes(date, score, color = index)) +
geom_line(lwd = 1.3) +
geom_smooth(color = "red", lty = "dashed", lwd = 1.2) +
theme_classic() +
theme(
panel.background = element_rect(fill = "#bad2e3"),
plot.background = element_rect(fill = "#bad2e3"),
plot.title.position = "plot",
plot.title = element_text(size = 26, color = "navy",face = "bold", margin = unit(c(0, 0, 0.6, 0), "cm")),
legend.background = element_rect(fill = "#bad2e3"),
strip.text = element_text(size = 20),
axis.text = element_text(size = 15),
axis.title = element_text( size = 16, face = "bold" ),
panel.spacing = unit(2, "lines"),
plot.caption = element_text(size = 18, color = "#1f78b4"),
plot.subtitle = element_text(size = 23, color = "#1f78b4", face = "italic", margin = unit(c(0, 0, 1, 0), "cm") ),
axis.title.x = element_blank(),
axis.title.y = element_text(size = 20, color = "black"),
axis.line.x = element_line(linetype = "dashed", size = 2),
axis.line.y = element_line(linetype = "dashed", size = 2),
axis.text.x = element_text(size = 19, color = "black"),
axis.text.y = element_text(size = 19, color = "black"),
strip.text.x = element_text(
size = 21, color = "navy", face = "bold.italic"),
strip.background = element_rect(
color="grey91", fill="#9fb6cd", size=1.5, linetype="solid"),
legend.position = "bottom",
legend.title = element_blank(),
legend.text = element_text(size = 21)
) +
guides(colour = guide_legend(override.aes = list(size=4))) +
scale_color_colorblind(name = "Index", labels = c("Grocery-Pharmacy", "Parks", "Residential", "Retail-Recreation", "Transit-Stations", "Workplaces")) +
scale_x_date(labels = date_format("%B"), breaks='2 month') +
labs(
title = "Google Analytics",
subtitle = "The graph shows movement trends over time by geography, across different categories of places.",
caption = "Data from Google's Community Mobile Reports",
x = "Date",
y = "Index",
color = ""
) +
facet_wrap(~index)
})
output$stats <- renderPlot({
if (input$scale == "Logarithmic") {
case <- covid_all %>%
filter(country == input$case_country) %>%
select(date, deaths, confirmed, recovered,population, lockdown) %>%
mutate(new_deaths = c(diff(c(deaths,0))),
new_cases = c(diff(c(confirmed,0))),
new_recovered = c(diff(c(recovered,0))),
death_rate = new_deaths/(confirmed + recovered) * 100,
infection_rate = new_cases/population * 100) %>%
pivot_longer(cols = contains("new"), names_to = "index", values_to = "value") %>%
ggplot(aes(date, value, fill = index)) +
geom_col() +
theme(
panel.background = element_rect(fill = "#bad2e3"),
plot.background = element_rect(fill = "#bad2e3"),
plot.title.position = "plot",
plot.title = element_text(size = 22, color = "navy",face = "bold", margin = unit(c(0, 0, 0.6, 0), "cm")),
legend.background = element_rect(fill = "#bad2e3"),
strip.text = element_text(size = 20),
axis.text = element_text(size = 15),
axis.title = element_text( size = 16, face = "bold" ),
panel.spacing = unit(2, "lines"),
plot.caption = element_text(size = 12, color = "#1f78b4"),
plot.subtitle = element_text(size = 23, color = "darkcyan", face = "italic"),
axis.title.x = element_text(size = 20, color = "black"),
axis.title.y = element_text(size = 20, color = "black"),
axis.text.x = element_text(size = 19, color = "black"),
axis.text.y = element_text(size = 19, color = "black"),
legend.position = "bottom",
legend.text = element_text(size = 13),
axis.line.x = element_blank(),
axis.line.y = element_blank()
) +
scale_x_date(labels = date_format("%B"), breaks='2 month') +
scale_y_log10() +
scale_fill_colorblind("", labels = c("New Cases", "New Deaths", "New Recovered")) +
labs(
title = "Daily Change in Cases by Category",
caption = "Data might contain missing values for some countries",
x = "Date",
y = "Number(log10)",
fill = ""
)
}
else {
case <- covid_all %>%
filter(country == input$case_country) %>%
select(date, deaths, confirmed, recovered,population, lockdown) %>%
mutate(new_deaths = c(diff(c(deaths,0))),
new_cases = c(diff(c(confirmed,0))),
new_recovered = c(diff(c(recovered,0))),
death_rate = new_deaths/(confirmed + recovered) * 100,
infection_rate = new_cases/population * 100) %>%
pivot_longer(cols = contains("new"), names_to = "index", values_to = "value") %>%
ggplot(aes(date, value, fill = index)) +
geom_col() +
theme(
panel.background = element_rect(fill = "#bad2e3"),
plot.background = element_rect(fill = "#bad2e3"),
plot.title.position = "plot",
plot.title = element_text(size = 22, color = "navy",face = "bold", margin = unit(c(0, 0, 0.6, 0), "cm")),
legend.background = element_rect(fill = "#bad2e3"),
strip.text = element_text(size = 20),
axis.text = element_text(size = 15),
axis.title = element_text( size = 16, face = "bold" ),
panel.spacing = unit(2, "lines"),
plot.caption = element_text(size = 12, color = "#1f78b4"),
plot.subtitle = element_text(size = 23, color = "darkcyan", face = "italic"),
axis.title.x = element_text(size = 20, color = "black"),
axis.title.y = element_text(size = 20, color = "black"),
axis.text.x = element_text(size = 19, color = "black"),
axis.text.y = element_text(size = 19, color = "black"),
legend.position = "bottom",
legend.text = element_text(size = 13),
axis.line.x = element_blank(),
axis.line.y = element_blank()
) +
scale_x_date(labels = date_format("%B"), breaks='2 month') +
scale_fill_colorblind("", labels = c("New Cases", "New Deaths", "New Recovered")) +
labs(
title = "Daily Change in Cases by Category",
caption = "Data might contain missing values for some countries",
x = "Cases",
y = "",
fill = ""
)
}
# I will use this to create a death_rate line graph
death <- covid_all %>%
filter(country == input$case_country) %>%
select(date, deaths, confirmed, recovered,population, lockdown) %>%
mutate(new_deaths = c(diff(c(deaths,0))),
new_cases = c(diff(c(confirmed,0))),
new_recovered = c(diff(c(recovered,0))),
death_rate = new_deaths/(confirmed + recovered)*100,
infection_rate = new_cases/population*100) %>%
#pivot_longer(cols = contains("rate"), names_to = "index", values_to = "rate") %>%
ggplot(aes(date, death_rate)) +
geom_line(color = "#1f78b4") +
theme(
panel.background = element_rect(fill = "#bad2e3"),
plot.background = element_rect(fill = "#bad2e3"),
plot.title.position = "plot",
plot.title = element_text(size = 22, color = "navy",face = "bold", margin = unit(c(0, 0, 0.6, 0), "cm")),
legend.background = element_rect(fill = "#9fb6cd"),
strip.text = element_text(size = 20),
axis.text = element_text(size = 15),
axis.title = element_text( size = 16, face = "bold" ),
panel.spacing = unit(2, "lines"),
plot.caption = element_text(size = 12, color = "#1f78b4"),
plot.subtitle = element_text(size = 23, color = "darkcyan", face = "italic"),
axis.title.x = element_text(size = 20, color = "black"),
axis.title.y = element_text(size = 20, color = "black"),
axis.text.x = element_text(size = 19, color = "black"),
axis.text.y = element_text(size = 19, color = "black"),
legend.position = "bottom",
legend.title = element_text(size = 17, color = "navy", face = "bold"),
legend.text = element_text(size = 13),
axis.line.x = element_blank(),
axis.line.y = element_blank()
) +
scale_x_date(labels = date_format("%B"), breaks='2 month') +
labs(
title = "Death Rate",
x = "",
y = "Death Rate(in %)"
)
case + death
})
# tweet_table <- eventReactive(input$go, {
#
# query <- searchTwitter(paste(input$hastag,"", "exclude:retweets"), n = 100)
#
# tweets <- tibble(map_df(query, as.data.frame)) %>%
# select(text, favoriteCount, retweetCount )
#
# tweets
#
# })
#
# tweet_graph <- eventReactive(input$go, {
# tweets2 <- tibble(map_df(query, as.data.frame)) %>%
# select(text)
#
# tweets2
# })
output$tweet_sent <- renderPlot({
query <- searchTwitter(paste(input$hastag,"", "exclude:retweets"), n = 100)
tweets <- tibble(map_df(query, as.data.frame)) %>%
select(text)
tokens <- tweets %>%
unnest_tokens(
output = word,
input = text,
token = "words" # default option
)
stopwords_smart <- get_stopwords(source = "smart")
sentiments_bing <- get_sentiments("nrc")
tokens %>%
anti_join(stopwords_smart) %>%
inner_join(sentiments_bing) %>%
count(sentiment, word, sort = TRUE) %>%
arrange(desc(n)) %>%
group_by(sentiment) %>%
top_n(10) %>%
ungroup() %>%
ggplot(aes(fct_reorder(word, n), n, fill = sentiment)) + geom_col() +
coord_flip() +
facet_wrap(~sentiment, scales = "free") + theme_minimal() +
labs(
title = "Sentiments in user reviews",
x = "" ) +
theme(
panel.background = element_rect(fill = "#bad2e3"),
plot.background = element_rect(fill = "#bad2e3"),
plot.title.position = "plot",
plot.title = element_text(size = 26, color = "navy",face = "bold", margin = unit(c(0, 0, 0.6, 0), "cm")),
legend.background = element_rect(fill = "#bad2e3"),
strip.text = element_text(size = 20),
axis.text = element_text(size = 11),
axis.title = element_text( size = 16, face = "bold" ),
panel.spacing = unit(2, "lines"),
plot.caption = element_text(size = 18, color = "#1f78b4"),
plot.subtitle = element_text(size = 23, color = "#1f78b4", face = "italic", margin = unit(c(0, 0, 1, 0), "cm") ),
axis.title.x = element_blank(),
axis.title.y = element_text(size = 20, color = "black"),
axis.line.x = element_line(linetype = "dashed", size = 2),
axis.line.y = element_line(linetype = "dashed", size = 2),
axis.text.x = element_text(size = 13, color = "black"),
axis.text.y = element_text(size = 9, color = "black"),
strip.text.x = element_text(
size = 15, color = "navy", face = "bold.italic"),
strip.background = element_rect(
color="grey91", fill="#9fb6cd", size=1.5, linetype="solid"),
legend.position = "none",
)
})
output$emotions <- renderPlot({
query <- searchTwitter(paste(input$hastag,"", "exclude:retweets"), n = 100)
tweets <- tibble(map_df(query, as.data.frame)) %>%
select(text)
tokens <- tweets %>%
unnest_tokens(
output = word,
input = text,
token = "words" # default option
)
stopwords_smart <- get_stopwords(source = "smart")
sentiments_bing <- get_sentiments("nrc")
sentiments <- tokens %>%
anti_join(stopwords_smart) %>%
inner_join(sentiments_bing) %>%
count(sentiment, word, sort = TRUE) %>%
arrange(desc(n)) %>%
group_by(sentiment) %>%
top_n(10) %>%
ungroup()
emotions <- sentiments %>%
group_by(sentiment) %>%
summarise(appearence = sum(n)) %>%
ungroup() %>%
mutate(emotion_index = appearence/sum(appearence)) %>%
arrange(desc(emotion_index))
emotions %>%
ggplot(aes(sentiment, appearence, fill = sentiment, label = paste(round(emotion_index,2),"%"))) +
geom_col() +
geom_label(size =8, color = "black", label.size = 0.5) +
scale_fill_discrete(type = c("orange", "purple", "darkred", "darkgreen",
"grey", "pink", "blue")) +
labs(
title = "Emotions observed in user reviews",
y = "Number of appearences"
) +
theme(
panel.background = element_rect(fill = "#bad2e3"),
plot.background = element_rect(fill = "#bad2e3"),
plot.title.position = "plot",
plot.title = element_text(size = 26, color = "navy",face = "bold", margin = unit(c(0, 0, 0.6, 0), "cm")),
legend.background = element_rect(fill = "#bad2e3"),
strip.text = element_text(size = 20),
axis.text = element_text(size = 15),
axis.title = element_text( size = 16, face = "bold" ),
panel.spacing = unit(2, "lines"),
plot.caption = element_text(size = 18, color = "#1f78b4"),
plot.subtitle = element_text(size = 23, color = "#1f78b4", face = "italic", margin = unit(c(0, 0, 1, 0), "cm") ),
axis.title.x = element_blank(),
axis.title.y = element_text(size = 20, color = "black"),
axis.line.x = element_line(linetype = "dashed", size = 2),
axis.line.y = element_line(linetype = "dashed", size = 2),
axis.text.x = element_text(size = 19, color = "black"),
axis.text.y = element_text(size = 19, color = "black"),
strip.text.x = element_text(
size = 21, color = "navy", face = "bold.italic"),
strip.background = element_rect(
color="grey91", fill="#9fb6cd", size=1.5, linetype="solid"),
legend.position = "none"
)
})
output$group_emotions <- renderPlot({
query <- searchTwitter(paste(input$hastag,"", "exclude:retweets"), n = 100)
tweets <- tibble(map_df(query, as.data.frame)) %>%
select(text)
tokens <- tweets %>%
unnest_tokens(
output = word,
input = text,
token = "words" # default option
)
stopwords_smart <- get_stopwords(source = "smart")
sentiments_bing <- get_sentiments("nrc")
sentiments <- tokens %>%
anti_join(stopwords_smart) %>%
inner_join(sentiments_bing) %>%
count(sentiment, word, sort = TRUE) %>%
arrange(desc(n)) %>%
group_by(sentiment) %>%
top_n(10) %>%
ungroup()
emotions <- sentiments %>%
group_by(sentiment) %>%
summarise(appearence = sum(n)) %>%
ungroup() %>%
mutate(emotion_index = appearence/sum(appearence)) %>%
arrange(desc(emotion_index))
encouraging <- emotions %>%
filter(sentiment %in% c("positive", "trust", "joy")) %>%
summarise(emotion = sum(emotion_index)) %>%
pull(emotion)
anxious <- emotions %>%
filter(sentiment %in% c("surprise", "aticipation", "fear")) %>%
summarise(emotion = sum(emotion_index)) %>%
pull(emotion)
unpleasant <- emotions %>%
filter(sentiment %in% c("anger", "disgust", "sadness", "negative")) %>%
summarise(emotion = sum(emotion_index)) %>%
pull(emotion)
emotions_group <- tibble(encouraging,
anxious,
unpleasant) %>%
pivot_longer(cols = 1:3, names_to = "emotion", values_to = "value")
emotions_group %>%
ggplot(aes(emotion, value, fill = emotion, label = paste(round(value,2),"%"))) +
geom_col() +
geom_label(size =12, color = "black", label.size = 0.5) +
scale_fill_discrete(type = c("orange", "darkgreen", "darkred")) +
labs(
title = "Grouped Emotions observed in user reviews",
y = "Frequence of appearence"
) +
theme(
panel.background = element_rect(fill = "#bad2e3"),
plot.background = element_rect(fill = "#bad2e3"),
plot.title.position = "plot",
text = element_text(size = 16),
) +
theme(
panel.background = element_rect(fill = "#bad2e3"),
plot.background = element_rect(fill = "#bad2e3"),
plot.title.position = "plot",
plot.title = element_text(size = 26, color = "navy",face = "bold", margin = unit(c(0, 0, 0.6, 0), "cm")),
legend.background = element_rect(fill = "#bad2e3"),
strip.text = element_text(size = 20),
axis.text = element_text(size = 15),
axis.title = element_text( size = 16, face = "bold" ),
panel.spacing = unit(2, "lines"),
plot.caption = element_text(size = 18, color = "#1f78b4"),
plot.subtitle = element_text(size = 23, color = "#1f78b4", face = "italic", margin = unit(c(0, 0, 1, 0), "cm") ),
axis.title.x = element_blank(),
axis.title.y = element_text(size = 20, color = "black"),
axis.line.x = element_line(linetype = "dashed", size = 2),
axis.line.y = element_line(linetype = "dashed", size = 2),
axis.text.x = element_text(size = 19, color = "black"),
axis.text.y = element_text(size = 19, color = "black"),
strip.text.x = element_text(
size = 21, color = "navy", face = "bold.italic"),
strip.background = element_rect(
color="grey91", fill="#9fb6cd", size=1.5, linetype="solid"),
legend.position = "none"
)
})
output$tweets <- renderDT({
query <- searchTwitter(paste(input$hastag,"", "exclude:retweets"), n = 100)
tweets <- tibble(map_df(query, as.data.frame))
tweets %>%
select(text, favoriteCount, retweetCount )
})
output$country_stats <- DT::renderDataTable(
datatable(
country_stats %>%
mutate(death_rate = death_rate/100,
infected_rate = infected_rate/100) %>%
dplyr::arrange(desc(total_deaths)),
rownames = FALSE,
colnames = c("Country","Total Deaths", "Total Infected", "Total Recovered", "Total Active", "Death Rate", "Infected Rate")
) %>%
formatStyle(
columns = names(country_stats),
backgroundColor = "#bad2e3",
color = "#4c4c4c",
fontWeight = "bold",
`font-size` = '18px'
) %>%
formatCurrency(columns = c("total_deaths", "total_recovered", "total_active", "total_infected"), currency = "", interval = 3, mark = ",") %>%
formatPercentage(c("death_rate", "infected_rate"), 2)
)
output$global <- DT::renderDataTable(
datatable(
global_stats,
options = list(searching = FALSE, bSort=FALSE, lengthChange = FALSE, bPaginate = FALSE, bInfo = FALSE),
rownames = FALSE,
colnames = c("Total Deaths", "Total Infected", "Total Recovered", "Total Active", "Death Rate", "Infected Rate")
) %>%
formatStyle(
columns = names(global_stats),
backgroundColor = "#bad2e3",
color = "#4c4c4c",
fontWeight = "bold",
`font-size` = '18px'
) %>%
formatPercentage(c("death_rate", "infected_rate"), 3) %>%
formatCurrency(columns = c("total_deaths", "total_recovered", "total_active", "total_infected"), currency = "", interval = 3, mark = ",")
)
total_cases <- corona_map$total_cases[match(mapCountry$names, corona_map$country)]
pal_fun <- colorQuantile("YlOrRd", NULL, n = 7)
breaks_qt <- classIntervals(corona_map$total_cases, n = 8, style = "fixed",
fixedBreaks = c(min(corona_map$total_cases), 10^4, 10^5, 5 * 10 ^ 5, 10^6, 2 * 10^6, 4 * 10^6, max(corona_map$total_cases))
)
values <- c(9, 10^4, 10^5, 5 * 10 ^ 5, 10^6, 2 * 10^6, 4 * 10^6, max(corona_map$total_cases))
interval <- values[values >9 & values < 7000000]
output$map <- renderLeaflet(
leaflet(mapCountry) %>% # create a blank canvas
addProviderTiles("NASAGIBS.ViirsEarthAtNight2012") %>%
addPolygons( # draw polygons on top of the base map (tile)
stroke = FALSE,
smoothFactor = 0.2,
fillOpacity = 1,
color = ~pal_fun(total_cases) # use the rate of each state to find the correct color
) %>%
addCircles(lng = corona_map$lng, lat = corona_map$lat,
radius = (corona_map$total_cases)/10,
layerId = corona_map$country,
weight = log(corona_map$total_cases), stroke = T, fillColor = "white", color = "black", fillOpacity = 3,
label = paste("Total confirmed cases to this date in", corona_map$country, ":", corona_map$total_cases),
labelOptions = labelOptions(noHide = F, textsize = "15px"),
popupOptions = corona_map$country,) %>%
addLegend("bottomleft",
colors = brewer.pal(8, "YlOrRd"),
labels =c(paste("Min cases =", values[1]), paste("up to", format(interval,scientific = T)), paste("Max cases =", values[8])),
values = corona_map$total_cases,
title = "Confirmed Cases",
opacity = 0.5) %>%
fitBounds(lng1 = min(corona_map$lng),
lat1 = min(corona_map$lat),
lng2 = max(corona_map$lng),
lat2 = max(corona_map$lat))
)
session$onSessionEnded(stopApp)
output$gif <- renderImage({
list(src = "www/instructions.gif",
contentType = 'image/gif',
width = 700,
height = 500,
alt = "This is alternate text")
}, deleteFile = FALSE)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.