LATEtest: LATEtest

Description Usage Arguments Value Examples

View source: R/LATEtest.R

Description

Main function: Prepares data, calls help functions, stores results. See the LATEtest website on https://github.com/farbmacher/LATEtest for more information, documentation and examples. Please report any bugs to farbmacher@econ.lmu.de

Usage

1
2
3
LATEtest(data, covars, huge = FALSE, tree_fraction = 0.5,
  minsize = 100, cp = 0, slice = c("equidistant", "equisized"),
  subsets = 4, alpha = 0.05, seed = 10101)

Arguments

data

provides dataset: outcome must be labelled Y, treatment D and instrument Z

covars

provides names of covariables in data (e.g., "Xvar1" "Xvar2" "Xvar3")

huge

if set to TRUE, model for orthogonalization learned on random subset of data (size defined in tree_fraction)

tree_fraction

fraction of the data used to build each tree of causal forest (and if huge==T, also used for regression forests); default=0.5

minsize

causal forest insists on at least "minsize" treated and "minsize" control observations per leaf, and pruned tree insists on at least 2*"minsize" observations in the additional trees to identify the promising subgroups

cp

sets complexity parameter which rpart uses to fit the tree before pruning; default=0

slice

choose "equisized" for equisized subsets (quantile-based) of the outcome or "equidistant" for equidistant subsets (grid-based) of the outcome

subsets

number of subsets used to discretize the outcome

alpha

nominal significance level of the test

seed

set random seed number

Value

list of the pruned trees, test results

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
# Generate data:
library("LATEtest")
library("rpart.plot")

n = 3000; p = 3; rho=0.3
u <- rnorm(n)
v <- rho * u + sqrt(1 - rho^2) * rnorm(n)
X <- matrix(rnorm(n * p), n, p)
colnames(X) <- paste("Xvar", 1:p, sep="")
Z <- rbinom(n, size = 1, prob = 0.5)
D<-as.numeric(0.2 * Z + v > 0)
# local violation of the exclusion restriction:
gamma <- as.numeric(ifelse(X[, 2] < -1, 1.25, 0))
Y <- as.vector(D + gamma * Z + u)
data <- as.data.frame(cbind(Y,D,Z,X))

# Perform test:
covars = paste0(colnames(data)[4:ncol(data)])
test <- LATEtest(data = data, covars = covars, subsets = 4, alpha = 0.05)
test

# Draw plot of pruned tree that led to local violation of LATE assumptions:
maxtree <- eval(parse(text = paste("test$treelist$tree_", test$maxTtree$label, test$maxTtree$J,sep = "")))
rpart.plot(maxtree, extra = 101, box.palette = "GyRd", shadow.col = "gray", nn = TRUE, roundint = FALSE)

farbmacher/LATEtest documentation built on Nov. 20, 2020, 10:13 a.m.