context("Testing the gene set summaries and related functionality")
test_that("summary_heat plot is generated", {
p <- gs_summary_heat(
res_enrich = res_enrich_IFNg_vs_naive,
res_de = res_macrophage_IFNg_vs_naive,
annotation_obj = anno_df,
n_gs = 20
)
expect_is(p, "gg")
gtl_macrophage <- GeneTonicList(
dds = dds_macrophage,
res_de = res_macrophage_IFNg_vs_naive,
res_enrich = res_enrich_IFNg_vs_naive,
annotation_obj = anno_df
)
p2 <- gs_summary_heat(
gtl = gtl_macrophage,
n_gs = 20
)
expect_is(p2, "gg")
})
test_that("summary plots are generated", {
expect_error(gs_summary_overview(res_enrich_IFNg_vs_naive))
expect_error(gs_summary_overview_pair(res_enrich_IFNg_vs_naive))
res_enrich_withscores <- get_aggrscores(res_enrich_IFNg_vs_naive,
res_macrophage_IFNg_vs_naive,
annotation_obj = anno_df,
aggrfun = mean
)
gtl_macrophage <- GeneTonicList(
dds = dds_macrophage,
res_de = res_macrophage_IFNg_vs_naive,
res_enrich = res_enrich_withscores[1:200, ],
annotation_obj = anno_df
)
# generating a shuffled dataset
res_enrich2 <- res_enrich_withscores[1:20, ]
set.seed(42)
shuffled_ones <- sample(seq_len(20)) # to generate permuted p-values
res_enrich2$gs_pvalue <- res_enrich2$gs_pvalue[shuffled_ones]
res_enrich2$z_score <- res_enrich2$z_score[shuffled_ones]
res_enrich2$aggr_score <- res_enrich2$aggr_score[shuffled_ones]
p1 <- gs_summary_overview(res_enrich_withscores)
p1_bar <- gs_summary_overview(res_enrich_withscores, return_barchart = TRUE)
p1_nocol <- gs_summary_overview(res_enrich_withscores, color_by = NULL)
p1_bar_nocol <- gs_summary_overview(res_enrich_withscores,
color_by = NULL,
return_barchart = TRUE
)
p1_gtl <- gs_summary_overview(gtl = gtl_macrophage)
expect_is(p1, "gg")
expect_is(p1_bar, "gg")
expect_is(p1_nocol, "gg")
expect_is(p1_bar_nocol, "gg")
expect_is(p1_gtl, "gg")
p2 <- gs_summary_overview_pair(res_enrich_withscores, res_enrich2)
expect_is(p2, "gg")
res_enrich2 <- res_enrich_withscores[1:42, ]
res_enrich3 <- res_enrich_withscores[1:42, ]
res_enrich4 <- res_enrich_withscores[1:42, ]
set.seed(2 * 42)
shuffled_ones_2 <- sample(seq_len(42)) # to generate permuted p-values
res_enrich2$gs_pvalue <- res_enrich2$gs_pvalue[shuffled_ones_2]
res_enrich2$z_score <- res_enrich2$z_score[shuffled_ones_2]
res_enrich2$aggr_score <- res_enrich2$aggr_score[shuffled_ones_2]
set.seed(3 * 42)
shuffled_ones_3 <- sample(seq_len(42)) # to generate permuted p-values
res_enrich3$gs_pvalue <- res_enrich3$gs_pvalue[shuffled_ones_3]
res_enrich3$z_score <- res_enrich3$z_score[shuffled_ones_3]
res_enrich3$aggr_score <- res_enrich3$aggr_score[shuffled_ones_3]
set.seed(4 * 42)
shuffled_ones_4 <- sample(seq_len(42)) # to generate permuted p-values
res_enrich4$gs_pvalue <- res_enrich4$gs_pvalue[shuffled_ones_4]
res_enrich4$z_score <- res_enrich4$z_score[shuffled_ones_4]
res_enrich4$aggr_score <- res_enrich4$aggr_score[shuffled_ones_4]
compa_list <- list(
scenario2 = res_enrich2,
scenario3 = res_enrich3,
scenario4 = res_enrich4
)
p3a <- gs_horizon(res_enrich_withscores,
compared_res_enrich_list = compa_list,
n_gs = 50,
sort_by = "clustered"
)
p3b <- gs_horizon(res_enrich_withscores,
compared_res_enrich_list = compa_list,
n_gs = 20,
sort_by = "first_set"
)
expect_is(p3a, "gg")
expect_is(p3b, "gg")
# for the pairs...
expect_error(
gs_summary_overview_pair(
res_enrich = res_enrich2,
res_enrich2 = res_enrich_IFNg_vs_naive, # no z score there
color_by = "z_score"
)
)
expect_error(
gs_summary_overview_pair(
res_enrich = res_enrich_withscores[1:30, ],
res_enrich2 = res_enrich_withscores[31:60, ]
)
)
# for the horizon...
expect_error(
gs_horizon(
res_enrich = topgoDE_macrophage_IFNg_vs_naive,
compared_res_enrich_list = compa_list,
n_gs = 50,
sort_by = "clustered"
)
)
expect_error(
gs_horizon(res_enrich_withscores,
compared_res_enrich_list = compa_list,
n_gs = 0,
sort_by = "clustered"
)
)
expect_error(
gs_horizon(res_enrich_withscores,
compared_res_enrich_list = res_enrich2,
n_gs = 50,
sort_by = "clustered"
)
)
expect_message(
gs_horizon(res_enrich_withscores,
compared_res_enrich_list = unname(compa_list),
n_gs = 20,
sort_by = "first_set"
)
)
compa_list2 <- compa_list
compa_list2[[3]] <- topgoDE_macrophage_IFNg_vs_naive
expect_error(
gs_horizon(res_enrich_withscores,
compared_res_enrich_list = compa_list2,
n_gs = 50,
sort_by = "clustered"
)
)
compa_list3 <- compa_list
compa_list3[[3]] <- res_enrich_IFNg_vs_naive # no z_score in it
expect_error(
gs_horizon(res_enrich_withscores,
compared_res_enrich_list = compa_list3,
n_gs = 50,
sort_by = "clustered"
)
)
compa_list4 <- compa_list
res_other_pvalue <- res_enrich_withscores
res_other_pvalue$gs_pval_weight <- res_other_pvalue$gs_pvalue
expect_error(
gs_horizon(res_other_pvalue,
compared_res_enrich_list = compa_list4,
n_gs = 50,
p_value_column = "gs_pval_weight",
sort_by = "clustered"
)
)
re1 <- res_enrich_withscores[1:30, ]
compa_list5 <- list(re2 = res_enrich2[51:70, ])
expect_error(
gs_horizon(re1,
compared_res_enrich_list = compa_list5,
n_gs = 50,
sort_by = "clustered"
)
)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.