#' @title Draw Overlap Plot
#' @description ne list overlap enrichment test + volcano plot
#' @param df something
#' @author April Kim
#' @family genoppi
#' @export
### --------------------------------------------------
### gene list overlap enrichment test + volcano plot
plotOverlapMinimal <- function(df, bait, reference, title = '', subtitle = NULL, drawLabel = T,
col.genelist.sig = 'yellow', inweb_enrichment_calculate = F,
size_point = 3, size_text=3, color_alpha=0.8,
plot.legend = T, drawLabelOnlySignificant = T,
mod.arrowhead = 0.5, mod.arrowlength = 3,
bait.cols = c('red', 'orange')){
require(ggplot2)
require(ggrepel)
# If a df with only genes are inputted assume
# that the user would like to just overlay genes
#if (ncol(reference) == 1){
# reference <- data.frame(gene=reference$gene, significant=TRUE)
# warn('[plotOverlap] no "significant"-column, assuming al#l genes significant.')
#}
# generate statistics for enrichement
if (inweb_enrichment_calculate){
statistics <- enrichment_inweb(df, bait, reference)
} else{
statistics <- enrichment(df, bait, reference)
}
if ('draw' %nin% colnames(reference)) reference$draw <- TRUE
subset1 <- merge(subset(df, gene %in% statistics$sigGenes & significant), reference)
subset2 <- merge(subset(df, gene %in% statistics$sigGenes & !significant), reference)
# start volcano plot
p <- ggplot(df, aes(x=logFC, y=-log10(pvalue))) +
geom_hline(yintercept=0, color="black") + geom_vline(xintercept=0, color="black") +
xlab(bquote(log[2]*"[fold change]")) + ylab(bquote(-log[10]*"["*italic(.("P"))*"-value]")) +
# plot all proteins (green = significant, blue = not significant)
geom_point(alpha=0.95, size=size_point+0.3, color=ifelse(df$significant, "black", "grey"), shape=ifelse(df$significant, 1, 1)) +
geom_point(alpha=color_alpha, size=size_point, color=ifelse(df$significant, "springgreen3", "grey")) +
#geom_point(alpha=color_alpha, size=size_point, color=ifelse(df$significant, "springgreen3", "grey")) +
#geom_point(subset(df, gene %in% bait), mapping=aes(x=logFC, y=-log10(pvalue)), size=size_point, color="black", shape=1) +
# label sig genes in gene list (yellow = significant, white = not significant)
geom_point(subset1, mapping=aes(x=logFC, y=-log10(pvalue), colour = dataset), size=size_point) +
#geom_point(subset1, mapping=aes(x=logFC, y=-log10(pvalue)), size=size_point, colour = col.genelist.sig) +
#scale_colour_manual(values=setNames(c('orange','blue'), author)) +
#rscale_colour_identity("author", breaks=c('orange','blue'), guide="legend") +
geom_point(subset2, mapping=aes(x=logFC, y=-log10(pvalue)), size=size_point, color="white") +
geom_point(subset(df, gene %in% bait | gene %in% statistics$sigGenes), mapping=aes(x=logFC, y=-log10(pvalue)),
size=size_point, color="black", shape=1) +
# label bait (red = signficant, orange = not significant)
geom_point(subset(df, gene %in% bait & significant), mapping=aes(x=logFC, y=-log10(pvalue)), size=size_point, color=bait.cols[1]) +
geom_point(subset(df, gene %in% bait & !significant), mapping=aes(x=logFC, y=-log10(pvalue)), size=size_point, color=bait.cols[2]) +
# title (with statistics$fisherP) and theme
labs(title = title,
subtitle = ifelse(is.null(subtitle),
paste(length(statistics$sigGenes)," detected. ",length(statistics$overlap),
" significant. p-value = ", format(statistics$fisherP,digits=3),sep=""),
subtitle))+
#ggtitle( +
#theme_minimal()
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), legend.position=c(.15,.15),
legend.key = element_rect(colour = "transparent", fill = "white"))
### only draw text labels for gene list genes if drawLabel==TRUE
if (drawLabel==TRUE) {
p <- p + geom_point(subset(df, (gene %in% bait | gene %in% statistics$sigGenes) & (gene %in% reference[reference$draw, ]$gene) | gene %in% bait), mapping=aes(x=logFC, y=-log10(pvalue)),
size=size_point, color="black", shape=1)
p <- p + geom_text_repel(subset(df, (gene==bait | gene %in% statistics$sigGenes) & (gene %in% reference[reference$draw, ]$gene) | gene %in% bait), mapping=aes(label=gene),
arrow=arrow(length=unit(0.015*mod.arrowhead, 'npc')), box.padding=unit(0.15*mod.arrowlength, "lines"),
point.padding=unit(0.2, "lines"), color="black", size=size_text)
} else {
p <- p + geom_text_repel(subset(df, gene==bait), mapping=aes(label=gene),
arrow=arrow(length=unit(0.015, 'npc')), box.padding=unit(0.15, "lines"),
point.padding=unit(0.2, "lines"), color="black", size=size_text)
}
if (TRUE){
f <- data.frame(table(reference$dataset, reference$color))
dataset_authors <- as.vector(f$Var1[as.logical(f$Freq)])
dataset_colors <- as.vector(f$Var2[as.logical(f$Freq)])
p <- p + scale_color_manual(values = dataset_colors)
}
print(p)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.