View source: R/superPC_optimWeibull_pValues.R
| GumbelMixpValues | R Documentation |
p-values from an optimal mixture of Weibull Extreme Value
distributions for supervised PCACalculate the p-values of test statistics from a mixture
of two Weibull Extreme Value distributions.
GumbelMixpValues(tScore_vec, pathwaySize_vec, optimParams_vec)
tScore_vec |
A vector of the maximum absolute |
pathwaySize_vec |
A vector of the number of genes in each pathway. |
optimParams_vec |
The NAMED vector of optimal Weibull Extreme
Value mixture distribution parameters returned by the
|
The likelihood function is equation (4) in Chen et al (2008): a
mixture of two Gumbel Extreme Value probability density functions, with
mixing proportion p. Within the code of this function, the values
mu1, mu2 and s1, s2 are placeholders for the
mean and precision, respectively.
See https://doi.org/10.1093/bioinformatics/btn458 for more information.
A named vector of the estimated raw p-values for each gene
pathway.
OptimGumbelMixParams; pathway_tScores;
SuperPCA_pVals
# DO NOT CALL THIS FUNCTION DIRECTLY.
# Use SuperPCA_pVals() instead.
## Not run:
### Load the Example Data ###
data("colon_pathwayCollection")
n_int <- lengths(colon_pathwayCollection$pathways)
### Simulate Maximum Absolute Control t-Values ###
# The SuperPCA algorithm defaults to 20 threshold values; the example
# pathway collection has 15 pathways.
t_mat <- matrix(rt(15 * 20, df = 5), nrow = 15)
absMax <- function(vec){
vec[which.max(abs(vec))]
}
tAbsMax_num <- apply(t_mat, 1, absMax)
### Calculate Optimal Parameters for the Gumbel Distribution ###
optParams_num <- OptimGumbelMixParams(
max_tControl_vec = tAbsMax_num,
pathwaySize_vec = n_int
)
### Simulate Maximum Absolute t-Values ###
tObs_mat <- matrix(rt(15 * 20, df = 3), nrow = 15)
tObsAbsMax_num <- apply(tObs_mat, 1, absMax)
### Calculate Observed-t-score p-Values ###
GumbelMixpValues(
tScore_vec = tObsAbsMax_num,
pathwaySize_vec = n_int,
optimParams_vec = optParams_num
)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.