View source: R/accessClass_pcOutpVals.R
getPathpVals | R Documentation |
p
-values from a superpcOut
- or aespcOut
-
class Object.Given an object of class aespcOut
or superpcOut
,
as returned by the functions AESPCA_pVals
or
SuperPCA_pVals
, respectively, return a data frame of the
p
-values for the top pathways.
getPathpVals(pcOut, score = FALSE, numPaths = 20L, alpha = NULL, ...)
## S3 method for class 'superpcOut'
getPathpVals(pcOut, score = FALSE, numPaths = 20L, alpha = NULL, ...)
## S3 method for class 'aespcOut'
getPathpVals(pcOut, score = FALSE, numPaths = 20L, alpha = NULL, ...)
pcOut |
An object of classes |
score |
Should the unadjusted |
numPaths |
The number of top pathways by raw |
alpha |
The significance threshold for raw |
... |
Dots for additional arguments (currently unused). |
Row-subset the pVals_df
entry of an object of class
aespcOut
or superpcOut
by the number of pathways requested
(via the nPaths
argument) or by the unadjusted significance level
for each pathway (via the alpha
argument). Return a data frame of
the pathway names, FDR-adjusted significance levels (if available), and
the raw score (negative natural logarithm of the p
-values) of each
pathway.
A data frame with the following columns:
terms
: The pathway name, as given in the
object@trimPathwayCollection$TERMS
object.
description
: (OPTIONAL) The pathway description, as given
in the object@trimPathwayCollection$description
object, if
supplied.
rawp
: The unadjusted p
-values of each pathway.
Included if score = FALSE
.
...
: Additional columns of FDR-adjusted p
-values
as specified through the adjustment
argument of the
SuperPCA_pVals
or AESPCA_pVals
functions.
score
: The negative natural logarithm of the unadjusted
p
-values of each pathway. Included if score = TRUE
.
NULL
NULL
### Load Data ###
data("colonSurv_df")
data("colon_pathwayCollection")
### Create -Omics Container ###
colon_Omics <- CreateOmics(
assayData_df = colonSurv_df[, -(2:3)],
pathwayCollection_ls = colon_pathwayCollection,
response = colonSurv_df[, 1:3],
respType = "survival"
)
### Calculate Supervised PCA Pathway p-Values ###
colon_superpc <- SuperPCA_pVals(
colon_Omics,
numPCs = 2,
parallel = TRUE,
numCores = 2,
adjustment = "BH"
)
### Extract Table of p-Values ###
# Top 5 Pathways
getPathpVals(
colon_superpc,
numPaths = 5
)
# Pathways with Unadjusted p-Values < 0.01
getPathpVals(
colon_superpc,
alpha = 0.01
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.