R/mma.test.R

Defines functions `mma.test`

#' Mudholkar--McDermott--Aumont Test for Ordered Variances for Normal Samples
#' 
#' Test for a monotonic trend in variances for normal samples. The test statistic 
#' is based on a combination of the finite intersection approach and the classical 
#' \eqn{F} (variance ratio) test \insertCite{Mudholkar_etal_1993}{lawstat}. 
#' By default, \code{NA}s are omitted.
#'
#'
#' @inheritParams lnested.test
#'
#'
#' @return A list with the following components:
#' \item{T}{the statistic and \eqn{p}-value of the test based on the Tippett \eqn{p}-value combination.}
#' \item{F}{the statistic and \eqn{p}-value of the test based on the Fisher \eqn{p}-value combination.}
#' \item{N}{the statistic and \eqn{p}-value of the test based on the Liptak \eqn{p}-value combination.}
#' \item{L}{the statistic and \eqn{p}-value of the test based on the Mudholkar--George \eqn{p}-value combination.}
#' 
#' Each of the list elements is a list of class \code{"htest"} with the following elements:
#' \item{statistic}{the value of the test statistic.}
#' \item{p.value}{the \eqn{p}-value of the test.}
#' \item{method}{type of test performed.}
#' \item{data.name}{a character string giving the name of the data.}
#' 
#' @references
#' \insertAllCited{}
#' 
#' @seealso \code{\link{neuhauser.hothorn.test}}, \code{\link{levene.test}}, 
#' \code{\link{lnested.test}}, \code{\link{ltrend.test}}, \code{\link{robust.mmm.test}}
#' 
#' @keywords htest variability
#' 
#' @author Kimihiro Noguchi, Yulia R. Gel
#' 
#' @export
#' @examples
#' data(pot)
#' mma.test(pot[, "obs"], pot[, "type"], tail = "left")$N
#' 
`mma.test` <-
    function(y, group, tail = c("right", "left", "both"))
    {
        ### assign tail and name###
        
        tail <- match.arg(tail)
        METHOD <- "Mudholkar et al. (1993) test"
        DNAME <- deparse(substitute(y))
        y <- y[!is.na(y)]
        group <- group[!is.na(y)]
        
        ### stop the code if the length of y does not match the length of group ###
        
        if (length(y) != length(group))
        {
            stop("the length of the data (y) does not match the length of the group")
        }
        
        ### sort the order just in case the input is not sorted by group ###
        
        reorder <- order(group)
        group <- group[reorder]
        y <- y[reorder]
        
        ### calculate component statistics f (Mudholkar et al., 1993) ###
        
        s <- tapply(y, group, var)
        n <- tapply(y, group, length)
        v <- n - 1
        k <- length(n)
        m <- k - 1
        s2 <- double(m)
        v2 <- double(m)
        
        for (i in 1:m)
        {
            s1 <- s[1:i]
            v1 <- v[1:i]
            s2[i] <- sum(v1 * s1) / sum(v1)
            v2[i] <- sum(v1)
        }
        
        s3 <- s[2:k]
        v3 <- v[2:k]
        f <- s3 / s2
        
        ### create vectors that store log of the component probabilities ###
        
        p <- double(m)
        q <- double(m)
        
        ### calculate log of the component probabilities ###
        
        if (tail == "right")
        {
            METHOD <- paste(METHOD, "(right-tailed)")
            
            for (j in 1:m)
            {
                p[j] <- pf(f[j],
                           v3[j],
                           v2[j],
                           lower.tail = FALSE,
                           log.p = TRUE)
                q[j] <- pf(f[j],
                           v3[j],
                           v2[j],
                           lower.tail = TRUE,
                           log.p = TRUE)
            }
        }
        
        else if (tail == "left")
        {
            METHOD <- paste(METHOD, "(left-tailed)")
            
            for (j in 1:m)
            {
                p[j] <- pf(f[j],
                           v3[j],
                           v2[j],
                           lower.tail = TRUE,
                           log.p = TRUE)
                q[j] <- pf(f[j],
                           v3[j],
                           v2[j],
                           lower.tail = FALSE,
                           log.p = TRUE)
            }
        }
        
        else
        {
            tail = "both"
            
            METHOD <- paste(METHOD, "(two-tailed)")
            
            for (j in 1:m)
            {
                r <- pf(f[j],
                        v3[j],
                        v2[j],
                        lower.tail = TRUE,
                        log.p = TRUE)
                s <- pf(f[j],
                        v3[j],
                        v2[j],
                        lower.tail = FALSE,
                        log.p = TRUE)
                
                if (r < log(1 / 2))
                {
                    p[j] <- r + log(2)
                    q[j] <- log(1 - exp(p[j]))
                }
                
                else
                {
                    p[j] <- s + log(2)
                    q[j] <- log(1 - exp(p[j]))
                }
            }
        }
        
        ### combine p-values using four p-value combining methods (T,F,N,L) ###
        
        psiT <- exp(min(p))
        psiF <- -2 * sum(p)
        psiN <- -sum(qnorm(p, lower.tail = TRUE, log.p = TRUE))
        A <- pi ^ 2 * m * (5 * m + 2) / (15 * m + 12)
        psiL <- -A ^ (-1 / 2) * sum(p - q)
        
        psiT.pvalue <- 1 - (1 - psiT) ^ m
        psiF.pvalue <- pchisq(psiF, df = 2 * m, lower.tail = FALSE)
        psiN.pvalue <- pnorm(psiN,
                             mean = 0,
                             sd = sqrt(m),
                             lower.tail = FALSE)
        psiL.pvalue <- pt(psiL, df = 5 * m + 4, lower.tail = FALSE)
        
        ### display output ###
        
        PSIT = psiT
        PSIF = psiF
        PSIN = psiN
        PSIL = psiL
        
        names(PSIT) = "Test Statistic (T)"
        names(PSIF) = "Test Statistic (F)"
        names(PSIN) = "Test Statistic (N)"
        names(PSIL) = "Test Statistic (L)"
        
        list(
            T = structure(
                list(
                    statistic = PSIT,
                    p.value = psiT.pvalue,
                    data.name = DNAME,
                    method = METHOD
                ),
                class = "htest"
            ),
            F = structure(
                list(
                    statistic = PSIF,
                    p.value = psiF.pvalue,
                    data.name = DNAME,
                    method = METHOD
                ),
                class = "htest"
            ),
            N = structure(
                list(
                    statistic = PSIN,
                    p.value = psiN.pvalue,
                    data.name = DNAME,
                    method = METHOD
                ),
                class = "htest"
            ),
            L = structure(
                list(
                    statistic = PSIL,
                    p.value = psiL.pvalue,
                    data.name = DNAME,
                    method = METHOD
                ),
                class = "htest"
            )
        )
    }
gel-research-group/lawstat documentation built on Dec. 20, 2021, 9:50 a.m.