mlCutpoint | R Documentation |
Internal function to estimate cutpoint following a machine-learning approach
mlCutpoint(
LR,
control.names,
treatment.names,
column,
div.col,
tv.col = NULL,
tv.cut,
post.cut = 0.5,
classifier1,
classifier2 = NULL,
interactions = NULL,
n.pc,
prop = 0.6,
center = FALSE,
scale = FALSE,
stat = 0L,
cut.values = NULL,
maxnodes = NULL,
ntree = 400,
nsplit = 1L,
num.cores = 1L,
tasks = 0L,
...
)
LR, res, control.names, treatment.names, column, div.col |
Same as in
|
column, div.col, tv.col, tv.cut, cut.values, stat |
Same as in
|
classifier1, classifier2, n.pc, prop, post.cut |
Same as in
|
interactions |
If a logistic classifier is used. Variable interactions to consider in a logistic regression model. Any pairwise combination of the variable 'hdiv', 'TV', 'wprob', and 'pos' can be provided. For example: 'hdiv:TV', 'wprob:pos', 'wprob:TV', etc. |
center |
A logical value indicating whether the variables should be shifted to be zero centered. |
scale |
A logical value indicating whether the variables should be |
maxnodes, ntree |
Only for Random Forest classifier
( |
nsplit |
Only for Random Forest classifier. The Random Forest
( |
... |
Additional arguments for |
cutp_data, num.cores, tasks |
Same as in |
This function is called by function estimateCutPoint
.
Specified in function estimateCutPoint
for parameter
setting simple = FALSE
Robersy Sanchez (https://genomaths.com).
## Get a set of potential DMPS (PS)
data(PS, package = 'MethylIT')
cutp <- mlCutpoint(LR = PS,
column = c(hdiv = TRUE, TV = TRUE,
wprob = TRUE, pos = TRUE),
classifier1 = 'qda', n.pc = 4,
control.names = c('C1', 'C2', 'C3'),
treatment.names = c('T1', 'T2', 'T3'),
tv.cut = 0.68, prop = 0.6,
div.col = 9L)
cutp$testSetPerformance
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.