pcaQDA | R Documentation |
The principal components (PCs) for predictor variables provided as input data are estimated and then the individual coordinates in the selected PCs are used as predictors in the qda
Predict using a PCA-LDA model built with function 'pcaLDA'
pcaQDA(
formula = NULL,
data = NULL,
grouping = NULL,
n.pc = 1,
retx = TRUE,
scale = FALSE,
center = FALSE,
tol = 1e-04,
method = "moment",
...
)
predict.pcaQDA(
object,
newdata = NULL,
type = c("qda.pred", "qd", "class", "posterior", "pca.ind.coord", "all"),
...
)
formula |
Same as in |
data |
Same as in |
grouping |
Same as in |
n.pc |
Number of principal components to use in the qda. |
retx |
A logical value indicating whether the rotated variables should be returned. |
scale |
Same as in |
center |
Same as in |
tol |
Same as in |
method |
Same as in |
... |
Further parameters to pass to |
object |
To use with function 'predict'. A 'pcaQDA' object containing a list of two objects: 1) an object of class inheriting from 'qda' and 2) an object of class inheriting from 'prcomp'. |
newdata |
To use with function 'predict'. New data for classification prediction. |
type |
To use with function 'predict'. The type of prediction required:
|
The principal components (PCs) are obtained using the function 'prcomp' from R package 'stats', while the qda is performed using the 'qda' function from R package 'MASS'. The current application only uses basic functionalities of mentioned functions. As shown in the example, 'pcaQDA' function can be used in general classification problems.
Function 'pcaQDA' returns an object ('pcaQDA') consisting of a list with two objects:
'qda': an object of class qda
from package
'MASS'.
'pca': an object of class prcomp
from
package 'stats'.
For information on how to use these objects see ?qda and ?prcomp.
pcaLDA
, qda
and
predict.lda
## Generate training and testing sets
data("iris3", package = "datasets")
set.seed(1)
rs <- sample(1:50, 25)
train <- data.frame(rbind(iris3[rs,,1], iris3[rs,,2], iris3[rs,,3]))
test <- data.frame(rbind(iris3[-rs,,1], iris3[-rs,,2], iris3[-rs,,3]))
cl <- factor(c(rep("setosa",25), rep("versicolor",25), rep("virginica",25)))
train$species <- cl
test$species <- cl
## Applying PCA + QDA
model <- pcaQDA(formula = species ~., data = train, n.pc = 2, max.pc = 2,
scale = TRUE, center = TRUE)
## To accomplish a predictions
pred_test <- predict(model, newdata = test, type = "all")
lapply(pred_test, head) ## The heads of the list elements
## Classification performance
require(caret)
conf.mat <- confusionMatrix(
data = test$species,
reference = factor(pred_test$qd$class))
conf.mat
## Graph of the individual quadratic-discriminant scores
require("ggplot2")
dt <- predict(model, newdata = test, type = "qd")
p0 <- theme(
axis.text.x = element_text( face = "bold", size = 18, color="black",
# hjust = 0.5, vjust = 0.5,
family = "serif", angle = 0,
margin = margin(1,0,1,0, unit = "pt" )),
axis.text.y = element_text( face = "bold", size = 18, color="black",
family = "serif",
margin = margin( 0,0.1,0,0, unit = "mm" )),
axis.title.x = element_text(face = "bold", family = "serif", size = 18,
color="black", vjust = 0 ),
axis.title.y = element_text(face = "bold", family = "serif", size = 18,
color="black",
margin = margin( 0,2,0,0, unit = "mm" ) ),
legend.title=element_blank(),
legend.text = element_text(size = 20, face = "bold", family = "serif"),
legend.position = c(0.5, 0.83),
panel.border = element_rect(fill=NA, colour = "black", linewidth=0.07),
panel.grid.minor = element_line(color= "white", linewidth = 0.2),
axis.ticks = element_line(linewidth = 0.1),
axis.ticks.length = unit(0.5, "mm"),
plot.margin = unit(c(1,1,2,1), "lines"))
ggplot(dt, aes(x = QD1, y = QD2, colour = class)) +
geom_point(size = 3) +
scale_color_manual(values = c("green4","blue","brown1")) +
stat_ellipse(aes(x = QD1, y = QD2, fill = class), data = dt,
type = "norm", geom = "polygon", level = 0.5,
alpha=0.2, show.legend = FALSE) +
scale_fill_manual(values = c("green4","blue","brown1")) + p0
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.