setwd("/home/asya/Dropbox (Partners HealthCare)/code/ASE/plot_figures")
library(tidyverse)
library(fitdistrplus)
library(cowplot)
library(ggrepel)
library(VennDiagram)
source("../R/ASE_functions.R")
source("../R/PerformAIAnalysis_CC.R")
source("../R/DownstreamASE.R")
source("../plot_figures/utilPlots.R")
MLN = 30
# Load X-mln data:
NEB_data = GetGatkPipelineTabs(paste0("../../../data/kidney/submln/", "MLN", MLN,"_SG", 1:6, "_N955_", "NEB", "_R1_merged_v2.mln", MLN,"_trial5_processed_gene_extended2.txt"), c(5,5,5,5,5,5), multiple = T)
SMART10ng_data = GetGatkPipelineTabs(paste0("../../../data/kidney/submln/", "MLN", MLN,"_SG", 7:12, "_N955_", "SMARTseq_10_ng", "_R1_merged_v2.mln", MLN,"_trial5_processed_gene_extended2.txt"), c(5,5,5,5,5,5), multiple = T)
SMART100pg_data = GetGatkPipelineTabs(paste0("../../../data/kidney/submln/", "MLN", MLN,"_SG", 1:6, "_N955_", "SMARTseq_100_pg", "_R1_merged_v2.mln", MLN,"_trial5_processed_gene_extended2.txt"), c(5,5,5,5,5,5), multiple = T)
data = list(NEB_data, SMART10ng_data, SMART100pg_data)
rm(NEB_data)
rm(SMART10ng_data)
rm(SMART100pg_data)
removeX <- function(DF, legitim_chrgenes){
return(DF[DF$ensembl_gene_id %in% legitim_chrgenes$gene, ])
}
chrgenes <- read.delim("../../../data/kidney/submln/MLN30_SG3_N955_NEB_R1_merged_v2.mln30_trial5_processed_gene_extended2.txt")[, c("ensembl_gene_id", "chr")]
data_noX = lapply(data, function(x){
x[x$ensembl_gene_id %in% chrgenes[chrgenes$chr!="chrX" & chrgenes$chr!="chrY", "ensembl_gene_id"], ]
})
CC = lapply(c(paste0("../../../data/kidney/submln/NEB_CorrConsts_", MLN,"mln_1.05.RData"),
paste0("../../../data/kidney/submln/SMARTseq_10_ng_CorrConsts_", MLN,"mln_1.05.RData"),
paste0("../../../data/kidney/submln/SMARTseq_100_pg_CorrConsts_", MLN,"mln_1.05.RData")),
function(file){
load(file)
sapply(out_XXmln_SMART10ng, function(x){x$fittedCC})
})
# DFs for Euler diagrams:
CalculateTestWithHalf <- function(df, cc, exp_name, thr=10){
res = Reduce(function(x, y) merge(x, y, by="ID"),
lapply(1:(ncol(df)%/%(2*5)), function(j){
sample1rep = (j-1)*5 + sample(1:5, 1)
PerformBinTestAIAnalysisForConditionNPoint_knownCC(df, sample1rep, cc, thr=thr)[, c("ID", "BT", "BT_CC")]
})
)
names(res) = c("ID",
paste0(c("BT.", "BT_CC."),
rep(1:(ncol(df)%/%(2*5)), each=2)
)
)
return(res)
}
# PLOTTING:
# (TRUE -- biased, FALSE -- not)
# BT.x is res of Binomial test (Bonf corr) for x-th replicate
# BT_CC.x is res of Corrected on CC Binomial test for x-th replicate
# example SMART 10 ng:
df = CalculateTestWithHalf(data_noX[[2]], list_of_consts[[2]], list_of_libprepnames[[2]], thr=10)
# Pair:
# example for 1,2,3: Binomial and CC corrected Binomial
grid.newpage()
draw.pairwise.venn(nrow(subset(df, BT_CC.1 == "TRUE")),
nrow(subset(df, BT_CC.2 == "TRUE")),
nrow(subset(df, BT_CC.1 == "TRUE" & BT_CC.2 == "TRUE")),
category = c("Tech Replicate #1", "Tech Replicate #2"),
lty = rep("blank", 2), fill = c("light blue", "pink"), alpha = rep(0.5, 2),
scaled = TRUE, print.mode=c("raw", "percent"))
grid.newpage()
draw.pairwise.venn(nrow(subset(df, BT.1 == "TRUE")),
nrow(subset(df, BT.2 == "TRUE")),
nrow(subset(df, BT.1 == "TRUE" & BT_CC.2 == "TRUE")),
category = c("Tech Replicate #1", "Tech Replicate #2"),
lty = rep("blank", 2), fill = c("light blue", "pink"), alpha = rep(0.5, 2),
scaled = TRUE, print.mode=c("raw", "percent"))
# Triple:
# example for 1,2,3
grid.newpage()
draw.triple.venn(nrow(subset(df, BT.1 == "TRUE")),
nrow(subset(df, BT.2 == "TRUE")),
nrow(subset(df, BT.3 == "TRUE")),
nrow(subset(df, BT.1 == "TRUE" & BT.2 == "TRUE")),
nrow(subset(df, BT.1 == "TRUE" & BT.3 == "TRUE")),
nrow(subset(df, BT.2 == "TRUE" & BT.3 == "TRUE")),
nrow(subset(df, BT.1 == "TRUE" & BT.2 == "TRUE" & BT.3 == "TRUE")),
category = c("Tech Replicate #1", "Tech Replicate #2", "Tech Replicate #3"),
lty = rep("blank", 3), fill = c("light blue", "pink", "light yellow"), alpha = rep(0.5, 3),
scaled = TRUE, print.mode=c("raw", "percent"))
grid.newpage()
draw.triple.venn(nrow(subset(df, BT_CC.1 == "TRUE")),
nrow(subset(df, BT_CC.2 == "TRUE")),
nrow(subset(df, BT_CC.3 == "TRUE")),
nrow(subset(df, BT_CC.1 == "TRUE" & BT_CC.2 == "TRUE")),
nrow(subset(df, BT_CC.1 == "TRUE" & BT_CC.3 == "TRUE")),
nrow(subset(df, BT_CC.2 == "TRUE" & BT_CC.3 == "TRUE")),
nrow(subset(df, BT_CC.1 == "TRUE" & BT_CC.2 == "TRUE" & BT_CC.3 == "TRUE")),
category = c("Tech Replicate #1", "Tech Replicate #2", "Tech Replicate #3"),
lty = rep("blank", 3), fill = c("light blue", "pink", "light yellow"), alpha = rep(0.5, 3),
scaled = TRUE, print.mode=c("raw", "percent"))
# Quadro:
# example for 1,2,3,4
grid.newpage()
draw.quad.venn(nrow(subset(df, BT_CC.1 == "TRUE")),
nrow(subset(df, BT_CC.2 == "TRUE")),
nrow(subset(df, BT_CC.3 == "TRUE")),
nrow(subset(df, BT_CC.4 == "TRUE")),
nrow(subset(df, BT_CC.1 == "TRUE" & BT_CC.2 == "TRUE")),
nrow(subset(df, BT_CC.1 == "TRUE" & BT_CC.3 == "TRUE")),
nrow(subset(df, BT_CC.1 == "TRUE" & BT_CC.4 == "TRUE")),
nrow(subset(df, BT_CC.2 == "TRUE" & BT_CC.3 == "TRUE")),
nrow(subset(df, BT_CC.2 == "TRUE" & BT_CC.4 == "TRUE")),
nrow(subset(df, BT_CC.3 == "TRUE" & BT_CC.4 == "TRUE")),
nrow(subset(df, BT_CC.1 == "TRUE" & BT_CC.2 == "TRUE" & BT_CC.3 == "TRUE")),
nrow(subset(df, BT_CC.1 == "TRUE" & BT_CC.2 == "TRUE" & BT_CC.4 == "TRUE")),
nrow(subset(df, BT_CC.1 == "TRUE" & BT_CC.3 == "TRUE" & BT_CC.4 == "TRUE")),
nrow(subset(df, BT_CC.2 == "TRUE" & BT_CC.3 == "TRUE" & BT_CC.4 == "TRUE")),
nrow(subset(df, BT_CC.1 == "TRUE" & BT_CC.2 == "TRUE" & BT_CC.3 == "TRUE" & BT_CC.4 == "TRUE")),
category = c("Tech Replicate #1", "Tech Replicate #2", "Tech Replicate #3", "Tech Replicate #4"),
lty = rep("blank", 4), fill = c("light blue", "pink", "light yellow", "light green"), alpha = rep(0.5, 4),
scaled = TRUE, print.mode=c("raw", "percent"))
# Quadro:
# example for 1,2 and comparing Binomial with CC corrected Binomial
grid.newpage()
draw.quad.venn(nrow(subset(df, BT.1 == "TRUE")),
nrow(subset(df, BT.2 == "TRUE")),
nrow(subset(df, BT_CC.1 == "TRUE")),
nrow(subset(df, BT_CC.2 == "TRUE")),
nrow(subset(df, BT.1 == "TRUE" & BT.2 == "TRUE")),
nrow(subset(df, BT.1 == "TRUE" & BT_CC.1 == "TRUE")),
nrow(subset(df, BT.1 == "TRUE" & BT_CC.2 == "TRUE")),
nrow(subset(df, BT.2 == "TRUE" & BT_CC.1 == "TRUE")),
nrow(subset(df, BT.2 == "TRUE" & BT_CC.2 == "TRUE")),
nrow(subset(df, BT_CC.1 == "TRUE" & BT_CC.2 == "TRUE")),
nrow(subset(df, BT.1 == "TRUE" & BT.2 == "TRUE" & BT_CC.1 == "TRUE")),
nrow(subset(df, BT.1 == "TRUE" & BT.2 == "TRUE" & BT_CC.2 == "TRUE")),
nrow(subset(df, BT.1 == "TRUE" & BT_CC.1 == "TRUE" & BT_CC.2 == "TRUE")),
nrow(subset(df, BT.2 == "TRUE" & BT_CC.1 == "TRUE" & BT_CC.2 == "TRUE")),
nrow(subset(df, BT.1 == "TRUE" & BT.2 == "TRUE" & BT_CC.1 == "TRUE" & BT_CC.2 == "TRUE")),
category = c("Tech Replicate #1\n(BT)", "Tech Replicate #2\n(BT)", "Tech Replicate #1\n(BT_CC)", "Tech Replicate #2\n(BT_CC)"),
lty = rep("blank", 4), fill = c("light blue", "pink", "light yellow", "light green"), alpha = rep(0.5, 4),
scaled = TRUE, print.mode=c("raw", "percent"))
# Less handly:
df_NEB = CalculateTestWithHalf(data_noX[[1]], list_of_consts[[1]], list_of_libprepnames[[1]], thr=10)
df_SM10 = CalculateTestWithHalf(data_noX[[2]], list_of_consts[[2]], list_of_libprepnames[[2]], thr=10)
df_SM100 = CalculateTestWithHalf(data_noX[[3]], list_of_consts[[3]], list_of_libprepnames[[3]], thr=10)
df_NEB_SM10_SM100 = Reduce(function(x, y) merge(x, y, by="ID"), list(df_NEB, df_SM10, df_SM100))
grid.newpage(); draw.pairwise.venn(nrow(subset(df_NEB_SM10_SM100, BT.2.x == "TRUE")),
nrow(subset(df_NEB_SM10_SM100, BT.2.y == "TRUE")),
nrow(subset(df_NEB_SM10_SM100, BT.2.x == "TRUE" & BT.2.y == "TRUE")),
category = c("Tech Replicate \nNEB", "Tech Replicate \nSMART10ng"),
lty = rep("blank", 2), fill = c("light blue", "pink"), alpha = rep(0.5, 2),
scaled = TRUE, print.mode=c("raw", "percent"))
grid.newpage(); draw.pairwise.venn(nrow(subset(df_NEB_SM10_SM100, BT.2.x == "TRUE")),
nrow(subset(df_NEB_SM10_SM100, BT.2 == "TRUE")),
nrow(subset(df_NEB_SM10_SM100, BT.2.x == "TRUE" & BT.2 == "TRUE")),
category = c("Tech Replicate \nNEB", "Tech Replicate \nSMART100pg"),
lty = rep("blank", 2), fill = c("light blue", "light green"), alpha = rep(0.5, 2),
scaled = TRUE, print.mode=c("raw", "percent"))
grid.newpage(); draw.pairwise.venn(nrow(subset(df_NEB_SM10_SM100, BT.2.y == "TRUE")),
nrow(subset(df_NEB_SM10_SM100, BT.2 == "TRUE")),
nrow(subset(df_NEB_SM10_SM100, BT.2.y == "TRUE" & BT.2 == "TRUE")),
category = c("Tech Replicate \nSMART10ng", "Tech Replicate \nSMART100pg"),
lty = rep("blank", 2), fill = c("pink", "light green"), alpha = rep(0.5, 2),
scaled = TRUE, print.mode=c("raw", "percent"))
grid.newpage(); draw.pairwise.venn(nrow(subset(df_NEB_SM10_SM100, BT.2.x == "TRUE")),
nrow(subset(df_NEB_SM10_SM100, BT.3.x == "TRUE")),
nrow(subset(df_NEB_SM10_SM100, BT.2.x == "TRUE" & BT.3.x == "TRUE")),
category = c("Tech Replicate \nNEB", "Tech Replicate \nNEB"),
fill = c("light blue", "light blue"), alpha = rep(0.5, 2),
scaled = TRUE, print.mode=c("raw", "percent"))
grid.newpage(); draw.pairwise.venn(nrow(subset(df_NEB_SM10_SM100, BT.2.y == "TRUE")),
nrow(subset(df_NEB_SM10_SM100, BT.3.y == "TRUE")),
nrow(subset(df_NEB_SM10_SM100, BT.2.y == "TRUE" & BT.3.y == "TRUE")),
category = c("Tech Replicate \nSMART10ng", "Tech Replicate \nSMART10ng"),
fill = c("pink", "pink"), alpha = rep(0.5, 2),
scaled = TRUE, print.mode=c("raw", "percent"))
grid.newpage(); draw.pairwise.venn(nrow(subset(df_NEB_SM10_SM100, BT.2 == "TRUE")),
nrow(subset(df_NEB_SM10_SM100, BT.3 == "TRUE")),
nrow(subset(df_NEB_SM10_SM100, BT.2 == "TRUE" & BT.3 == "TRUE")),
category = c("Tech Replicate \nSMART100pg", "Tech Replicate \nSMART100pg"),
fill = c("light green", "light green"), alpha = rep(0.5, 2),
scaled = TRUE, print.mode=c("raw", "percent"))
grid.newpage(); draw.pairwise.venn(nrow(subset(df_NEB_SM10_SM100, BT_CC.2.x == "TRUE")),
nrow(subset(df_NEB_SM10_SM100, BT_CC.2.y == "TRUE")),
nrow(subset(df_NEB_SM10_SM100, BT_CC.2.x == "TRUE" & BT_CC.2.y == "TRUE")),
category = c("Tech Replicate \nNEB", "Tech Replicate \nSMART10ng"),
lty = rep("blank", 2), fill = c("light blue", "pink"), alpha = rep(0.5, 2),
scaled = TRUE, print.mode=c("raw", "percent"))
grid.newpage(); draw.pairwise.venn(nrow(subset(df_NEB_SM10_SM100, BT_CC.2.x == "TRUE")),
nrow(subset(df_NEB_SM10_SM100, BT_CC.2 == "TRUE")),
nrow(subset(df_NEB_SM10_SM100, BT_CC.2.x == "TRUE" & BT_CC.2 == "TRUE")),
category = c("Tech Replicate \nNEB", "Tech Replicate \nSMART100pg"),
lty = rep("blank", 2), fill = c("light blue", "light green"), alpha = rep(0.5, 2),
scaled = TRUE, print.mode=c("raw", "percent"))
grid.newpage(); draw.pairwise.venn(nrow(subset(df_NEB_SM10_SM100, BT_CC.2.y == "TRUE")),
nrow(subset(df_NEB_SM10_SM100, BT_CC.2 == "TRUE")),
nrow(subset(df_NEB_SM10_SM100, BT_CC.2.y == "TRUE" & BT_CC.2 == "TRUE")),
category = c("Tech Replicate \nSMART10ng", "Tech Replicate \nSMART100pg"),
lty = rep("blank", 2), fill = c("pink", "light green"), alpha = rep(0.5, 2),
scaled = TRUE, print.mode=c("raw", "percent"))
grid.newpage(); draw.pairwise.venn(nrow(subset(df_NEB_SM10_SM100, BT_CC.2.x == "TRUE")),
nrow(subset(df_NEB_SM10_SM100, BT_CC.3.x == "TRUE")),
nrow(subset(df_NEB_SM10_SM100, BT_CC.2.x == "TRUE" & BT_CC.3.x == "TRUE")),
category = c("Tech Replicate \nNEB", "Tech Replicate \nNEB"),
fill = c("light blue", "light blue"), alpha = rep(0.5, 2),
scaled = TRUE, print.mode=c("raw", "percent"))
grid.newpage(); draw.pairwise.venn(nrow(subset(df_NEB_SM10_SM100, BT_CC.2.y == "TRUE")),
nrow(subset(df_NEB_SM10_SM100, BT_CC.3.y == "TRUE")),
nrow(subset(df_NEB_SM10_SM100, BT_CC.2.y == "TRUE" & BT_CC.3.y == "TRUE")),
category = c("Tech Replicate \nSMART10ng", "Tech Replicate \nSMART10ng"),
fill = c("pink", "pink"), alpha = rep(0.5, 2),
scaled = TRUE, print.mode=c("raw", "percent"))
grid.newpage(); draw.pairwise.venn(nrow(subset(df_NEB_SM10_SM100, BT_CC.2 == "TRUE")),
nrow(subset(df_NEB_SM10_SM100, BT_CC.3 == "TRUE")),
nrow(subset(df_NEB_SM10_SM100, BT_CC.2 == "TRUE" & BT_CC.3 == "TRUE")),
category = c("Tech Replicate \nSMART100pg", "Tech Replicate \nSMART100pg"),
fill = c("light green", "light green"), alpha = rep(0.5, 2),
scaled = TRUE, print.mode=c("raw", "percent"))
# # Subsample 2 reps from data:
#
# Ntrials = 1
# set.seed(1)
# sampleMreps = sapply(1:(max(Ntrials, 10)), function(i){(sample(1:6, 2)-1)*5 + sample(5, 2, replace=T)})
# list_of_datas = data_noX
# list_of_consts = list(mean(CC[[1]][6:15]), mean(CC[[2]]), mean(CC[[3]]))
# list_of_libprepnames = list("1: NEBNext (100ng)", "2: SMARTseq (10ng)", "3: SMARTseq (0.1ng)")
# reppair = sampleMreps[, 1]
#
# DF_forplot = CreateForplotDF_btNbtcc(lapply(1:3, function(i){
# CreateForplotDF(list_of_datas[[i]], reppair, list_of_consts[[i]], list_of_libprepnames[[i]])
# }))
#
# DF_forplot$BTBFCC$BT.x = as.factor(DF_forplot$BTBFCC$BT.x)
# levels(DF_forplot$BTBFCC$BT.x) = c("Balanced genes \n (according to replicate 1)", "Imbalanced Genes \n (according to replicate 1)")
# DF_forplot$BTBFCC$BT.y = as.factor(DF_forplot$BTBFCC$BT.y)
# levels(DF_forplot$BTBFCC$BT.y) = c("Balanced genes \n (according to replicate 1)", "Imbalanced Genes \n (according to replicate 1)")
#
# DF_forplot$BTBF$BT.x = as.factor(DF_forplot$BTBF$BT.x)
# levels(DF_forplot$BTBF$BT.x) = c("Balanced genes \n (according to replicate 1)", "Imbalanced Genes \n (according to replicate 1)")
# DF_forplot$BTBF$BT.y = as.factor(DF_forplot$BTBF$BT.y)
# levels(DF_forplot$BTBF$BT.y) = c("Balanced genes \n (according to replicate 1)", "Imbalanced Genes \n (according to replicate 1)")
#
# # Venn-Euler for given pairs:
# # No CC
# for(lib in unique(DF_forplot$BTBF$libprep)){
# df = DF_forplot$BTBF[DF_forplot$BTBF$libprep == lib, ]
# grid.newpage()
# draw.pairwise.venn(nrow(subset(df, BT.x == "Imbalanced Genes \n (according to replicate 1)")),
# nrow(subset(df, BT.y == "Imbalanced Genes \n (according to replicate 1)")),
# nrow(subset(df, BT.x == "Imbalanced Genes \n (according to replicate 1)" & BT.y == "Imbalanced Genes \n (according to replicate 1)")),
# category = c("Tech Replicate #1", "Tech Replicate #2"),
# cat.pos = c(-5, 5), cat.dist = rep(0.025, 2),
# lty = rep("blank", 2), fill = c("light blue", "pink"), alpha = rep(0.5, 2),
# scaled = TRUE)
# }
# # CC
# for(lib in unique(DF_forplot$BTBFCC$libprep)){
# df = DF_forplot$BTBFCC[DF_forplot$BTBFCC$libprep == lib, ]
# grid.newpage()
# draw.pairwise.venn(nrow(subset(df, BT.x == "Imbalanced Genes \n (according to replicate 1)")),
# nrow(subset(df, BT.y == "Imbalanced Genes \n (according to replicate 1)")),
# nrow(subset(df, BT.x == "Imbalanced Genes \n (according to replicate 1)" & BT.y == "Imbalanced Genes \n (according to replicate 1)")),
# category = c("Tech Replicate #1", "Tech Replicate #2"),
# cat.pos = c(-5, 5), cat.dist = rep(0.025, 2),
# lty = rep("blank", 2), fill = c("light blue", "pink"), alpha = rep(0.5, 2),
# scaled = TRUE)
# }
library(venneuler)
plot(venneuler(na.omit(df[, c(2,4)])))
plot(venneuler(na.omit(df[, c(3,5)])))
plot(venneuler(na.omit(df[, c(2,4,6)])))
plot(venneuler(na.omit(df[, c(3,5,7)])))
plot(venneuler(na.omit(df[, c(2,4,6,8)])))
plot(venneuler(na.omit(df[, c(3,5,7,9)])))
plot(venneuler(na.omit(df[, c(2,4,6,8,10,12)])))
plot(venneuler(na.omit(df[, c(3,5,7,9,11,13)])))
par(mfrow=c(1, 3))
bt1 = venneuler(na.omit(df_NEB_SM10_SM100[, c(2,4,6,8,10,12)]))
bt2 = venneuler(na.omit(df_NEB_SM10_SM100[, 12+c(2,4,6,8,10,12)]))
bt3 = venneuler(na.omit(df_NEB_SM10_SM100[, 24+c(2,4,6,8,10,12)]))
bt1$labels <- rep("", 6)
bt2$labels <- rep("", 6)
bt3$labels <- rep("", 6)
plot(bt1)
plot(bt2)
plot(bt3)
btcc1 = venneuler(na.omit(df_NEB_SM10_SM100[, c(3,5,7,9,11,13)]))
btcc2 = venneuler(na.omit(df_NEB_SM10_SM100[, 12+c(3,5,7,9,11,13)]))
btcc3 = venneuler(na.omit(df_NEB_SM10_SM100[, 24+c(3,5,7,9,11,13)]))
btcc1$labels <- rep("", 6)
btcc2$labels <- rep("", 6)
btcc3$labels <- rep("", 6)
plot(btcc1)
plot(btcc2)
plot(btcc3)
par(mfrow=c(2, 3))
plot(bt1)
plot(bt2)
plot(bt3)
plot(btcc1)
plot(btcc2)
plot(btcc3)
par(mfrow=c(1,2))
bt_all = venneuler(na.omit(df_NEB_SM10_SM100[, c(c(2,4,6,8,10,12), 12+c(2,4,6,8,10,12), 24+c(2,4,6,8,10,12))]))
bt_all$labels <- rep("", 18)
plot(bt_all)
btcc_all = venneuler(na.omit(df_NEB_SM10_SM100[, c(c(3,5,7,9,11,13), 12+c(3,5,7,9,11,13), 24+c(3,5,7,9,11,13))]))
btcc_all$labels <- rep("", 18)
plot(btcc_all)
par(mfrow=c(1,2))
bt_all3 = venneuler(na.omit(df_NEB_SM10_SM100[, c(c(8,10,12), 12+c(8,10,12), 24+c(8,10,12))]))
bt_all3$labels <- rep("", 9)
plot(bt_all3)
btcc_all3 = venneuler(na.omit(df_NEB_SM10_SM100[, c(c(9,11,13), 12+c(9,11,13), 24+c(9,11,13))]))
btcc_all3$labels <- rep("", 9)
plot(btcc_all3)
par(mfrow=c(1,2))
bt_all2 = venneuler(na.omit(df_NEB_SM10_SM100[, c(c(4,10), 12+c(4,10), 24+c(4,10))]))
bt_all2$labels <- rep("", 6)
plot(bt_all2)
btcc_all2 = venneuler(na.omit(df_NEB_SM10_SM100[, c(c(5,11), 12+c(5,11), 24+c(5,11))]))
btcc_all2$labels <- rep("", 6)
plot(btcc_all2)
bt_all1 = venneuler(na.omit(df_NEB_SM10_SM100[, c(c(4), 12+c(4), 24+c(4))]))
bt_all1$labels <- rep("", 3)
plot(bt_all1)
btcc_all1 = venneuler(na.omit(df_NEB_SM10_SM100[, c(c(5), 12+c(5), 24+c(5))]))
btcc_all1$labels <- rep("", 3)
plot(btcc_all1)
par(mfrow=c(3,2))
bt1_2 = venneuler(na.omit(df_NEB_SM10_SM100[, c(4,10)]))
bt1_2$labels <- rep("", 2)
plot(bt1_2)
btcc1_2 = venneuler(na.omit(df_NEB_SM10_SM100[, c(5,11)]))
btcc1_2$labels <- rep("", 2)
plot(btcc1_2)
bt2_2 = venneuler(na.omit(df_NEB_SM10_SM100[, 12+c(4,10)]))
bt2_2$labels <- rep("", 2)
plot(bt2_2)
btcc2_2 = venneuler(na.omit(df_NEB_SM10_SM100[, 12+c(5,11)]))
btcc2_2$labels <- rep("", 2)
plot(btcc2_2)
bt3_2 = venneuler(na.omit(df_NEB_SM10_SM100[, 24+c(4,10)]))
bt3_2$labels <- rep("", 2)
plot(bt3_2)
btcc3_2 = venneuler(na.omit(df_NEB_SM10_SM100[, 24+c(5,11)]))
btcc3_2$labels <- rep("", 2)
plot(btcc3_2)
bt12 = venneuler(na.omit(df_NEB_SM10_SM100[, c(4,12+10)]))
bt12$labels <- rep("", 2)
plot(bt12)
btcc12 = venneuler(na.omit(df_NEB_SM10_SM100[, c(5,12+11)]))
btcc12$labels <- rep("", 2)
plot(btcc12)
bt13 = venneuler(na.omit(df_NEB_SM10_SM100[, c(4,24+10)]))
bt13$labels <- rep("", 2)
plot(bt13)
btcc13 = venneuler(na.omit(df_NEB_SM10_SM100[, c(5,24+11)]))
btcc13$labels <- rep("", 2)
plot(btcc13)
bt23 = venneuler(na.omit(df_NEB_SM10_SM100[, c(12+4,24+10)]))
bt23$labels <- rep("", 2)
plot(bt23)
btcc23 = venneuler(na.omit(df_NEB_SM10_SM100[, c(12+5,24+11)]))
btcc23$labels <- rep("", 2)
plot(btcc23)
par(mfrow=c(1,2))
bt_all5 = venneuler(na.omit(df_NEB_SM10_SM100[, c(c(4,6,8,10,12), 12+c(2,4,6,8,10,12), 24+c(2,4,6,8,10,12))]))
bt_all5$labels <- rep("", 18)
plot(bt_all5)
btcc_all5 = venneuler(na.omit(df_NEB_SM10_SM100[, c(c(5,7,9,11,13), 12+c(2,5,7,9,11,13), 24+c(2,5,7,9,11,13))]))
btcc_all5$labels <- rep("", 18)
plot(btcc_all5)
df_NEB_SM10_SM100_2 = rbind(df_NEB_SM10_SM100, df_NEB_SM10_SM100, df_NEB_SM10_SM100)
df_NEB_SM10_SM100_2[1:nrow(df_NEB_SM10_SM100), c(12+(2:13), 24+(2:13))] = FALSE
df_NEB_SM10_SM100_2[(nrow(df_NEB_SM10_SM100)+1):(2*nrow(df_NEB_SM10_SM100)), c(2:13, 24+(2:13))] = FALSE
df_NEB_SM10_SM100_2[(nrow(df_NEB_SM10_SM100)*2+1):(3*nrow(df_NEB_SM10_SM100)), c(2:13, 12+(2:13))] = FALSE
par(mfrow=c(1,1))
bt_btcc = venneuler(na.omit(df_NEB_SM10_SM100_2[, c(4:11, c(4:11)+12, c(4:11)+24)]))
bt_btcc$labels <- rep("", 18)
plot(bt_btcc)
#
# HIST of (in 1),(in 2),(in 3),(in 4) ...
#
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.