#' Normal Distribution Maximum Likelihood Estimates
#'
#' Makes maximum likelihood estimations about a normal distributions mean and standard deviation.
#'
#' @param x #data
#' @param mu #a sequence of possible means
#' @param sig #a sequence of possible standard deviations
#' @param ... #Additional parameters
#'
#' @return #a list containing x, coordinates of estimated mu & sigma, and max likelihood
#' @export
#'
#' @examples
#'mymlnorm(x = c(4,5,6,7,4), mu = seq(1, 4, 10000), sig = seq(.1, 3, 10000), ...)
mymlnorm=function(x,mu,sig,...){ #x sample vector
nmu=length(mu) # number of values in mu
nsig=length(sig)
n=length(x) # sample size
zz=c() ## initialize a new vector
lfun=function(x,m,p) log(dnorm(x,mean=m,sd=p)) # log lik for normal
for(j in 1:nsig){
z=outer(x,mu,lfun,p=sig[j]) # z a matrix
# col 1 of z contains lfun evaluated at each x with first value of mu,
# col2 each x with 2nd value of m
# all with sig=sig[j]
y=apply(z,2,sum)
# y is a vector filled with log lik values,
# each with a difft mu and all with the same sig[j]
zz=cbind(zz,y)
## zz is the matrix with each column containing log L values, rows difft mu, cols difft sigmas
}
maxl=max(exp(zz))
coord=which(exp(zz)==maxl,arr.ind=TRUE)
maxlsig=apply(zz,1,max)
contour(mu,sig,exp(zz),las=3,xlab=expression(mu),ylab=expression(sigma),axes=TRUE,
main=expression(paste("L(",mu,",",sigma,")",sep="")),...)
mlx=round(mean(x),2) # theoretical
mly=round(sqrt((n-1)/n)*sd(x),2)
#axis(1,at=c(0:20,mlx),labels=sort(c(0:20,mlx)))
#axis(2,at=c(0:20,mly),labels=TRUE)
abline(v=mean(x),lwd=2,col="Green")
abline(h=sqrt((n-1)/n)*sd(x),lwd=2,col="Red")
# Now find the estimates from the co-ords
muest=mu[coord[1]]
sigest=sig[coord[2]]
abline(v=muest, h=sigest)
return(list(x=x,coord=coord,maxl=maxl))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.