#' @keywords internal
calc_test_stat_gamma_shape <- function(x, shape, alternative) {
MLEs <- unname(EnvStats::egamma(x, method = "mle")$parameters)
MLEs[2] <- 1 / MLEs[2] # convert to rate
obs_shape <- MLEs[1]
obs_rate <- MLEs[2]
# Profile scale/rate based on null hypothesis shape
profile_scale <- mean(x) / shape
profile_rate <- 1 / profile_scale
W <- 2 * (sum(stats::dgamma(x = x, shape = obs_shape, rate = obs_rate, log = TRUE)) -
sum(stats::dgamma(x = x, shape = shape, rate = profile_rate, log = TRUE)))
W <- pmax(W, 0)
if (alternative != "two.sided") {
W <- sign(obs_shape - shape) * W^.5
}
return(W)
}
#' Test the shape parameter of a gamma distribution.
#'
#' @inheritParams gaussian_mu_one_sample
#' @param shape a number indicating the tested value of the shape parameter.
#' @inherit gaussian_mu_one_sample return
#' @inherit gaussian_mu_one_sample source
#' @examples
#' library(LRTesteR)
#'
#' # Null is true
#' set.seed(1)
#' x <- rgamma(100, shape = 1, scale = 2)
#' gamma_shape_one_sample(x, 1, "two.sided")
#'
#' # Null is false
#' set.seed(1)
#' x <- rgamma(100, shape = 3, scale = 2)
#' gamma_shape_one_sample(x, 1, "greater")
#' @export
gamma_shape_one_sample <- LRTesteR:::create_test_function_one_sample_case_one(LRTesteR:::calc_test_stat_gamma_shape, shape, 45, 0)
#' @keywords internal
calc_test_stat_gamma_scale <- function(x, scale, alternative) {
MLEs <- unname(EnvStats::egamma(x, method = "mle")$parameters)
MLEs[2] <- 1 / MLEs[2] # convert to rate
obs_shape <- MLEs[1]
obs_rate <- MLEs[2]
obs_scale <- 1 / obs_rate
get_profile_shape <- function(x, scale) {
scale <- pmax(scale, .0000001) # Avoid underflow in bounds of search
geo_mean <- function(x) {
return(exp(mean(log(x))))
}
profile_helper <- function(shape) {
return(base::digamma(shape) - log(geo_mean(x) / scale))
}
profile_shape <- stats::uniroot(profile_helper, lower = geo_mean(x) / scale, upper = geo_mean(x) / scale + 1)$root
return(profile_shape)
}
profile_shape <- get_profile_shape(x, scale)
W <- 2 * (sum(stats::dgamma(x = x, shape = obs_shape, scale = obs_scale, log = TRUE)) -
sum(stats::dgamma(x = x, shape = profile_shape, scale = scale, log = TRUE)))
W <- pmax(W, 0)
if (alternative != "two.sided") {
W <- sign(obs_scale - scale) * W^.5
}
return(W)
}
#' Test the scale parameter of a gamma distribution.
#'
#' @inheritParams gaussian_mu_one_sample
#' @param scale a number indicating the tested value of the scale parameter.
#' @inherit gaussian_mu_one_sample return
#' @inherit gaussian_mu_one_sample source
#' @examples
#' library(LRTesteR)
#'
#' # Null is true
#' set.seed(1)
#' x <- rgamma(100, shape = 1, scale = 2)
#' gamma_scale_one_sample(x, 2, "two.sided")
#'
#' # Null is false
#' set.seed(1)
#' x <- rgamma(100, shape = 1, scale = 2)
#' gamma_scale_one_sample(x, 1, "greater")
#' @export
gamma_scale_one_sample <- LRTesteR:::create_test_function_one_sample_case_one(LRTesteR:::calc_test_stat_gamma_scale, scale, 45, 0)
#' @keywords internal
calc_test_stat_gamma_rate <- function(x, rate, alternative) {
MLEs <- unname(EnvStats::egamma(x, method = "mle")$parameters)
MLEs[2] <- 1 / MLEs[2] # convert to rate
obs_shape <- MLEs[1]
obs_rate <- MLEs[2]
get_profile_shape <- function(x, rate) {
scale <- 1 / rate
scale <- pmax(scale, .0000001) # Avoid underflow in bounds of search
geo_mean <- function(x) {
return(exp(mean(log(x))))
}
profile_helper <- function(shape) {
return(base::digamma(shape) - log(geo_mean(x) / scale))
}
profile_shape <- stats::uniroot(profile_helper, lower = geo_mean(x) / scale, upper = geo_mean(x) / scale + 1)$root
return(profile_shape)
}
profile_shape <- get_profile_shape(x, rate)
W <- 2 * (sum(stats::dgamma(x = x, shape = obs_shape, rate = obs_rate, log = TRUE)) -
sum(stats::dgamma(x = x, shape = profile_shape, rate = rate, log = TRUE)))
W <- pmax(W, 0)
if (alternative != "two.sided") {
W <- sign(obs_rate - rate) * W^.5
}
return(W)
}
#' Test the rate parameter of a gamma distribution.
#'
#' @inheritParams gaussian_mu_one_sample
#' @param rate a number indicating the tested value of the rate parameter.
#' @inherit gaussian_mu_one_sample return
#' @inherit gaussian_mu_one_sample source
#' @examples
#' library(LRTesteR)
#'
#' # Null is true
#' set.seed(1)
#' x <- rgamma(100, shape = 1, rate = 1)
#' gamma_rate_one_sample(x, 1, "two.sided")
#'
#' # Null is false
#' set.seed(1)
#' x <- rgamma(100, shape = 1, rate = 2)
#' gamma_rate_one_sample(x, 1, "greater")
#' @export
gamma_rate_one_sample <- LRTesteR:::create_test_function_one_sample_case_one(LRTesteR:::calc_test_stat_gamma_rate, rate, 45, 0)
#' @keywords internal
calc_test_stat_gamma_shape_one_way <- function(x, fctr) {
# null
MLEs <- unname(EnvStats::egamma(x, method = "mle")$parameters)
MLEs[2] <- 1 / MLEs[2] # convert to rate
obs_shape <- MLEs[1]
obs_rate <- MLEs[2]
W1 <- sum(stats::dgamma(x = x, shape = obs_shape, rate = obs_rate, log = TRUE))
# alt
get_group_MLEs <- function(x, fctr) {
neg_log_likelihood <- function(estimates) {
est_rate <- estimates[1] # pooled rate
est_shapes <- estimates[2:length(estimates)]
likelihoods <- vector(mode = "numeric", length = length(levels(fctr)))
for (i in seq_along(levels(fctr))) {
l <- levels(fctr)[i]
index <- which(fctr == l)
tempX <- x[index]
likelihoods[i] <- sum(stats::dgamma(x = tempX, shape = est_shapes[i], rate = est_rate, log = TRUE))
}
likelihoods <- -1 * sum(likelihoods)
return(likelihoods)
}
# starting points
shapes <- vector(mode = "numeric", length = length(levels(fctr)))
for (i in seq_along(levels(fctr))) {
l <- levels(fctr)[i]
index <- which(fctr == l)
tempX <- x[index]
s <- log(mean(tempX)) - mean(log(tempX))
shape <- (3 - s + ((s - 3)^2 + 24 * s)^.5) / (12 * s)
# newton updates
tol <- 999
counter <- 0
while (tol > .00001 && counter <= 30) {
shape_new <- shape - (log(shape) - base::digamma(shape) - s) / ((1 / shape) - base::psigamma(shape, deriv = 1))
tol <- max(abs(shape - shape_new))
counter <- counter + 1
shape <- shape_new
}
shapes[i] <- shape
rm(shape)
}
start <- c(obs_rate, shapes)
group_MLEs <- stats::optim(start, neg_log_likelihood, lower = .Machine$double.eps, method = "L-BFGS-B", control = list(factr = 1e4))$par
return(group_MLEs)
}
group_MLEs <- get_group_MLEs(x, fctr)
profile_rate_HA <- group_MLEs[1]
group_shapes <- group_MLEs[2:length(group_MLEs)]
rm(group_MLEs)
likelihoods <- vector(mode = "numeric", length = length(levels(fctr)))
for (i in seq_along(levels(fctr))) {
l <- levels(fctr)[i]
index <- which(fctr == l)
tempX <- x[index]
likelihoods[i] <- sum(stats::dgamma(x = tempX, shape = group_shapes[i], rate = profile_rate_HA, log = TRUE))
}
W2 <- sum(likelihoods)
W <- 2 * (W2 - W1)
W <- pmax(W, 0)
return(W)
}
#' Test the equality of shape parameters of gamma distributions.
#'
#' @inheritParams gaussian_mu_one_way
#' @inherit gaussian_mu_one_way return
#' @inherit gaussian_mu_one_way source
#' @details
#' \itemize{
#' \item Null: All shapes are equal. (shape_1 = shape_2 ... shape_k).
#' \item Alternative: At least one shape is not equal.
#' }
#' @examples
#' library(LRTesteR)
#'
#' # Null is true
#' set.seed(1)
#' x <- rgamma(150, 2, 2)
#' fctr <- c(rep(1, 50), rep(2, 50), rep(3, 50))
#' fctr <- factor(fctr, levels = c("1", "2", "3"))
#' gamma_shape_one_way(x, fctr, .95)
#'
#' # Null is false
#' set.seed(1)
#' x <- c(rgamma(50, 1, 2), rgamma(50, 2, 2), rgamma(50, 3, 2))
#' fctr <- c(rep(1, 50), rep(2, 50), rep(3, 50))
#' fctr <- factor(fctr, levels = c("1", "2", "3"))
#' gamma_shape_one_way(x, fctr, .95)
#' @export
gamma_shape_one_way <- create_test_function_one_way_case_one(LRTesteR:::calc_test_stat_gamma_shape_one_way, gamma_shape_one_sample, 90)
#' @keywords internal
calc_test_stat_gamma_scale_one_way <- function(x, fctr) {
# null
MLEs <- unname(EnvStats::egamma(x, method = "mle")$parameters)
MLEs[2] <- 1 / MLEs[2] # convert to rate
obs_shape <- MLEs[1]
obs_rate <- MLEs[2]
obs_scale <- 1 / obs_rate
W1 <- sum(stats::dgamma(x = x, shape = obs_shape, rate = obs_rate, log = TRUE))
# alt
get_group_MLEs <- function(x, fctr) {
neg_log_likelihood <- function(estimates) {
est_shape <- estimates[1] # pooled shape
est_scales <- estimates[2:length(estimates)]
likelihoods <- vector(mode = "numeric", length = length(levels(fctr)))
for (i in seq_along(levels(fctr))) {
l <- levels(fctr)[i]
index <- which(fctr == l)
tempX <- x[index]
likelihoods[i] <- sum(stats::dgamma(x = tempX, shape = est_shape, scale = est_scales[i], log = TRUE))
}
likelihoods <- -1 * sum(likelihoods)
return(likelihoods)
}
# starting points (MLEs from above)
start <- c(obs_shape, rep(obs_scale, length(levels(fctr))))
group_MLEs <- stats::optim(start, neg_log_likelihood, lower = .Machine$double.eps, method = "L-BFGS-B", control = list(factr = 1e4))$par
return(group_MLEs)
}
group_MLEs <- get_group_MLEs(x, fctr)
profile_shape_HA <- group_MLEs[1]
group_scales <- group_MLEs[2:length(group_MLEs)]
rm(group_MLEs)
likelihoods <- vector(mode = "numeric", length = length(levels(fctr)))
for (i in seq_along(levels(fctr))) {
l <- levels(fctr)[i]
index <- which(fctr == l)
tempX <- x[index]
likelihoods[i] <- sum(stats::dgamma(x = tempX, shape = profile_shape_HA, scale = group_scales[i], log = TRUE))
}
W2 <- sum(likelihoods)
W <- 2 * (W2 - W1)
W <- pmax(W, 0)
return(W)
}
#' Test the equality of scale parameters of gamma distributions.
#'
#' @inheritParams gaussian_mu_one_way
#' @inherit gaussian_mu_one_way return
#' @inherit gaussian_mu_one_way source
#' @details
#' \itemize{
#' \item Null: Null: All scales are equal. (scale_1 = scale_2 ... scale_k).
#' \item Alternative: At least one scale is not equal.
#' }
#' @examples
#' library(LRTesteR)
#'
#' # Null is true
#' set.seed(1)
#' x <- rgamma(150, 1, scale = 2)
#' fctr <- c(rep(1, 50), rep(2, 50), rep(3, 50))
#' fctr <- factor(fctr, levels = c("1", "2", "3"))
#' gamma_scale_one_way(x, fctr, .95)
#'
#' # Null is false
#' set.seed(1)
#' x <- c(rgamma(50, 2, scale = 1), rgamma(50, 2, scale = 2), rgamma(50, 2, scale = 3))
#' fctr <- c(rep(1, 50), rep(2, 50), rep(3, 50))
#' fctr <- factor(fctr, levels = c("1", "2", "3"))
#' gamma_scale_one_way(x, fctr, .95)
#' @export
gamma_scale_one_way <- create_test_function_one_way_case_one(LRTesteR:::calc_test_stat_gamma_scale_one_way, gamma_scale_one_sample, 90)
#' @keywords internal
calc_test_stat_gamma_rate_one_way <- function(x, fctr) {
# null
MLEs <- unname(EnvStats::egamma(x, method = "mle")$parameters)
MLEs[2] <- 1 / MLEs[2] # convert to rate
obs_shape <- MLEs[1]
obs_rate <- MLEs[2]
W1 <- sum(stats::dgamma(x = x, shape = obs_shape, rate = obs_rate, log = TRUE))
# alt
get_group_MLEs <- function(x, fctr) {
neg_log_likelihood <- function(estimates) {
est_shape <- estimates[1] # pooled shape
est_rates <- estimates[2:length(estimates)]
likelihoods <- vector(mode = "numeric", length = length(levels(fctr)))
for (i in seq_along(levels(fctr))) {
l <- levels(fctr)[i]
index <- which(fctr == l)
tempX <- x[index]
likelihoods[i] <- sum(stats::dgamma(x = tempX, shape = est_shape, rate = est_rates[i], log = TRUE))
}
likelihoods <- -1 * sum(likelihoods)
return(likelihoods)
}
# starting points (MLEs from above)
start <- c(obs_shape, rep(obs_rate, length(levels(fctr))))
group_MLEs <- stats::optim(start, neg_log_likelihood, lower = .Machine$double.eps, method = "L-BFGS-B", control = list(factr = 1e4))$par
return(group_MLEs)
}
group_MLEs <- get_group_MLEs(x, fctr)
profile_shape_HA <- group_MLEs[1]
group_rates <- group_MLEs[2:length(group_MLEs)]
rm(group_MLEs)
likelihoods <- vector(mode = "numeric", length = length(levels(fctr)))
for (i in seq_along(levels(fctr))) {
l <- levels(fctr)[i]
index <- which(fctr == l)
tempX <- x[index]
likelihoods[i] <- sum(stats::dgamma(x = tempX, shape = profile_shape_HA, rate = group_rates[i], log = TRUE))
}
W2 <- sum(likelihoods)
W <- 2 * (W2 - W1)
W <- pmax(W, 0)
return(W)
}
#' Test the equality of rate parameters of gamma distributions.
#'
#' @inheritParams gaussian_mu_one_way
#' @inherit gaussian_mu_one_way return
#' @inherit gaussian_mu_one_way source
#' @details
#' \itemize{
#' \item Null: All rates are equal. (rate_1 = rate_2 ... rate_k).
#' \item Alternative: At least one rate is not equal.
#' }
#' @examples
#' library(LRTesteR)
#'
#' # Null is true
#' set.seed(1)
#' x <- rgamma(150, 1, 2)
#' fctr <- c(rep(1, 50), rep(2, 50), rep(3, 50))
#' fctr <- factor(fctr, levels = c("1", "2", "3"))
#' gamma_rate_one_way(x, fctr, .95)
#'
#' # Null is false
#' set.seed(1)
#' x <- c(rgamma(50, 2, 1), rgamma(50, 2, 2), rgamma(50, 2, 3))
#' fctr <- c(rep(1, 50), rep(2, 50), rep(3, 50))
#' fctr <- factor(fctr, levels = c("1", "2", "3"))
#' gamma_rate_one_way(x, fctr, .95)
#' @export
gamma_rate_one_way <- create_test_function_one_way_case_one(LRTesteR:::calc_test_stat_gamma_rate_one_way, gamma_rate_one_sample, 90)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.