Description Usage Arguments Value See Also Examples
View source: R/signalp_parallel.R
This function calls the command line tool signalp
to predict the presence and location of
signal peptide cleavage sites in amino acid sequences.
Large input files (>500 sequnces) are automatically split into smaller chunks
so that signalp
prediction can be run as an embarassingly parallel process
on a specified number of cores.
1 2 3 |
input_obj |
an instance of class |
version |
version of |
organism |
a character string with the following options:
|
run_mode |
a character string with the following options:
|
paths |
if required version of |
truncate |
a logical indicating:
Default is |
cores |
number of cores for multicore processing. Default is |
sensitive |
optional argument, a logical indicating:
Default is |
legacy_method |
optional argument, which prediction method to use when running SiganlP 2.0 and SignalP 3.0:
|
an object of SignalpResult class
1 2 3 4 5 6 7 8 9 10 11 | # read fasta file in AAStringSet object
aa <- readAAStringSet(system.file("extdata", "sample_prot_100.fasta",
package = "SecretSanta"))
# assign this object to the input_fasta slot
# of empty CBSResult object
inp <- CBSResult(in_fasta = aa[1:10])
# run signalp2 on the initial file:
r1 <- signalp(inp, version = 2, organism = 'euk', run_mode = "starter",
legacy_method = 'hmm')
r4 <- signalp(inp, version = 4, organism = 'euk', run_mode = "starter")
r4_sensitive <- signalp(inp, version = 4.1, organism = 'euk', run_mode = 'starter')
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.