# utility functions
# create a named list
module <- function(..., sort = TRUE) {
dots <- list(...)
names <- names(dots)
# guess names from call
cl <- match.call()
nm <- as.character(as.list(cl)[-1])
if (is.null(names)) {
names(dots) <- nm
} else {
blank_names <- names == ""
names[blank_names] <- nm[blank_names]
names(dots) <- names
}
if (sort) {
dots <- dots[order(names(dots))]
}
dots
}
# find out whether the usr has conda installed and visible
#' @importFrom reticulate conda_binary
have_conda <- function() {
conda_bin <- tryCatch(reticulate::conda_binary("auto"),
error = function(e) NULL
)
!is.null(conda_bin)
}
#' @importFrom reticulate py_available
have_python <- function() {
tryCatch(
expr = reticulate::py_available(initialize = TRUE),
error = function(e) FALSE
)
}
#' @importFrom reticulate py_module_available
have_tfp <- function() {
is_tfp_available <- reticulate::py_module_available("tensorflow_probability")
if (is_tfp_available) {
pkg <- reticulate::import("pkg_resources")
tfp_version <- pkg$get_distribution("tensorflow_probability")$version
is_tfp_available <- utils::compareVersion("0.15.0", tfp_version) <= 0
}
return(is_tfp_available)
}
#' @importFrom reticulate py_module_available
have_tf <- function() {
is_tf_available <- reticulate::py_module_available("tensorflow")
if (is_tf_available) {
tf_version <- suppressMessages(tf$`__version__`)
is_tf_available <- utils::compareVersion("2.9.0", tf_version) <= 0
}
return(is_tf_available)
}
version_tf <- function(){
if (have_tf()) {
tf$`__version__`
} else {
NULL
}
}
version_tfp <- function(){
if (have_tfp()) {
tfp$`__version__`
} else {
NULL
}
}
# helper for *apply statements on R6 objects
member <- function(x, method) {
eval(parse(text = glue::glue("x${method}")))
}
node_type <- function(node) {
classes <- class(node)
type <- grep("*_node", classes, value = TRUE)
gsub("_node", "", type)
}
# access the float type option
tf_float <- function() {
float_name <- options()$greta_tf_float
tf[[float_name]]
}
# cast an R scalar as a float of the correct type in TF code
fl <- function(x) {
tf$constant(x, dtype = tf_float())
}
# get the tensor for the batch size in the dag recently defined (since it's
# not always possible to pass the dag in)
get_batch_size <- function() {
greta_stash$batch_size
}
# coerce an integer(ish) vector to a list as expected in tensorflow shape
# arguments
#' @noRd
#' @importFrom tensorflow shape
to_shape <- function(dim) {
do.call(shape, as.list(dim))
}
# is this greta_array actually a scalar?
is_scalar <- function(x) {
identical(dim(x), c(1L, 1L))
}
# is it a row vector?
is_row <- function(x) {
length(dim(x) == 1) && dim(x)[1] == 1L
}
# flatten a greta array into a column vector in column-major order
flatten <- function(x) {
x[seq_along(x)]
}
# return an integer to pass on as an RNG seed
get_seed <- function() {
# if n is >= 2^31 then the vector is represented as a double, and causes
# a bunch of TF mechanics to break as they require integers
sample.int(
n = 2^30,
size = 1
)
}
# does a pointer exist (as a named object) and is it from the current session
# use like: live_pointer("joint_density", dag$tf_environment)
live_pointer <- function(tensor_name, environment = parent.frame()) {
exists(tensor_name, envir = environment) &&
!is.null(environment[[tensor_name]]$name)
}
# nolint start
# get the next seed as a L'Ecuyer
future_seed <- function() {
okind <- RNGkind()[1]
on.exit(RNGkind(okind), add = TRUE)
RNGkind("L'Ecuyer-CMRG")
.GlobalEnv$.Random.seed
}
# nolint end
create_log_file <- function(create = FALSE) {
filename <- tempfile(pattern = "greta_log_")
if (create) {
file.create(filename)
}
filename
}
# given a number of bars to be printed at the same time, determine the width of
# sub process bars, so they all fit on the same line
bar_width <- function(n_bars) {
terminal_width <- options()$width
# a space between each bar, divide up the remainder and add 2 spaces to each
total_width <- terminal_width - (n_bars - 1)
bar_width <- total_width %/% n_bars
bar_width - 2
}
# record the messages produced by the expression in the file
#' @importFrom utils capture.output
record <- function(expr, file) {
if (!is.null(file)) {
msg <- capture.output(out <- eval(expr), type = "message")
writeLines(msg, file)
} else {
out <- eval(expr)
}
invisible(out)
}
# convert an assumed numeric to an array with at least 2 dimensions
as_2d_array <- function(x) {
# coerce data from common formats to an array here
x <- as.array(x)
# coerce 1D arrays to column vectors
one_dimensional <- n_dim(x) == 1
if (one_dimensional) {
dim(x) <- c(dim(x), 1)
}
x
}
# add an additional dimension at the beginning of an array
add_first_dim <- function(x) {
x <- as.array(x)
array(x, dim = c(1, dim(x)))
}
# drop the additional dimension at the beginning of an array
drop_first_dim <- function(x) {
x <- as.array(x)
not_1d <- n_dim(x) > 1
if (not_1d) {
x <- array(x, dim = dim(x)[-1])
}
x
}
# given an R array with first dimension of size 1, tile it to have size 'times'
# on that dimension
tile_first_dim <- function(x, times) {
x_list <- replicate(times, x, simplify = FALSE)
do.call(abind::abind, c(x_list, list(along = 1)))
}
# if x is an R matrix representing a column vector, make it a plain R vector
drop_column_dim <- function(x) {
dims <- dim(x)
is_2_by_1 <- length(dims) == 2 && dims[2] == 1L
if (is_2_by_1) {
x <- as.vector(x)
}
x
}
# where x is a tensor with no batch dimension, and y is a tensor with a batch
# dimension, tile x to have first dimension matching y (dimension determined at
# run time)
expand_to_batch <- function(x, y) {
batch_size <- tf$shape(y)[[0]]
ndim <- n_dim(x)
tf$tile(x, c(batch_size, rep(1L, ndim - 1)))
}
# does this tensor have a batch dimension (of unknown size) as its first
# dimension?
has_batch <- function(x) is.na(dim(x)[1])
# given a list of tensors, if none or all of them have a batch dimension, return
# the list. If any (but not all) of them has a batch dimension, tile the
# unbatched ones (which are assumed to have first dimension 1) to match the
# dimension of the batched ones dimension
match_batches <- function(values) {
is_tensor <- vapply(values, inherits, "tensorflow.tensor", FUN.VALUE = FALSE)
values_mutable <- values[is_tensor]
have_batches <- vapply(values_mutable, has_batch, FUN.VALUE = TRUE)
any_but_not_all_have_batch_and_dim <- !all(have_batches) & any(have_batches)
if (any_but_not_all_have_batch_and_dim) {
# tile the others to match the batch
target_id <- which(have_batches)[1]
target <- values_mutable[[target_id]]
for (i in which(!have_batches)) {
values_mutable[[i]] <- expand_to_batch(values_mutable[[i]], target)
}
}
values[is_tensor] <- values_mutable
values
}
# split a 3D array of n_samples * n_chains * n_parameters posterior samples into
# a list of n_chains 2D arrays of dimension n_samples * n_parameters
split_chains <- function(samples_array) {
dims_in <- dim(samples_array)
dims_out <- dims_in[-2]
n_chains <- dims_in[2]
lapply(
seq_len(n_chains),
function(i) {
x <- samples_array[, i, , drop = FALSE]
dim(x) <- dims_out
x
}
)
}
# take a greta array dimension and return the dimension of the hessian to return
# to the user
hessian_dims <- function(dim) {
has_2d <- length(dim) == 2
is_2_by_1 <- has_2d && dim[2] == 1L
if (is_2_by_1) {
dim <- dim[1]
}
rep(dim, 2)
}
# generate a random 8-digit hexadecimal string
rhex <- function() {
paste(as.raw(sample.int(256L, 4, TRUE) - 1L), collapse = "")
}
# stop TensorFlow messaging about deprecations etc.
#' @importFrom reticulate py_set_attr import
disable_tensorflow_logging <- function(disable = TRUE) {
logging <- reticulate::import("logging")
# nolint start
logger <- logging$getLogger("tensorflow")
# nolint end
reticulate::py_set_attr(logger, "disabled", disable)
}
pad_vector <- function(x, to_length, with = 1) {
pad_by <- to_length - length(x)
if (pad_by > 0) {
x <- c(x, rep(with, pad_by))
}
x
}
has_distribution <- function(node) {
!is.null(node$distribution)
}
misc_module <- module(
module,
member,
node_type,
tf_float,
fl,
to_shape,
is_scalar,
flatten,
get_seed,
live_pointer,
future_seed,
create_log_file,
bar_width,
record,
as_2d_array,
add_first_dim,
drop_first_dim,
tile_first_dim,
drop_column_dim,
expand_to_batch,
has_batch,
match_batches,
split_chains,
hessian_dims,
rhex,
disable_tensorflow_logging,
pad_vector
)
# convert an array to a vector row-wise
flatten_rowwise <- function(array) {
dim <- dim(array)
array <- aperm(array, rev(seq_along(dim)))
dim(array) <- NULL
array
}
# convert an vector to an array row-wise
unflatten_rowwise <- function(array, dim) {
array <- as.array(array)
# if any dim has length 1, make it a column vector
if (length(dim) == 1) {
dim <- c(dim, 1)
}
dim(array) <- rev(dim)
array <- aperm(array, rev(seq_along(dim)))
dim(array) <- dim
array
}
# create an array with the same dimensions as tensor and fill it with
# consecutive increasing integers in python order
dummy <- function(dims) {
vec <- seq_len(prod(dims)) - 1
unflatten_rowwise(vec, dims)
}
# create a greta array of zeros with the correct dimensions
dummy_greta_array <- function(x) {
do.call(zeros, list(dim(x)))
}
dummy_array_module <- module(
flatten_rowwise,
unflatten_rowwise,
dummy,
dummy_greta_array
)
# given a base colour, return a function taking a value between 0 and 1 and
# returning a colour linearly interpolated between black, the colour and white,
# so that values close to 0.5 match the base colour, values close to 0 are
# nearer black, and values close to 1 are nearer white
#' @importFrom grDevices colorRampPalette
palettize <- function(base_colour) {
pal <- colorRampPalette(c("#000000", base_colour, "#ffffff"))
function(val) {
stopifnot(val > 0 & val < 1)
cols <- pal(1001)
cols[round(val * 1000 + 1)]
}
}
# colour scheme for plotting
#' @importFrom grDevices col2rgb
greta_col <- function(which = c(
"main",
"dark",
"light",
"lighter",
"super_light"
),
colour = "#996bc7") {
# tests if a color encoded as string can be converted to RGB
tryCatch(
is.matrix(grDevices::col2rgb(colour)),
error = function(e) {
cli::cli_abort(
"Invalid colour: {colour}"
)
}
)
which <- match.arg(which)
pal <- palettize(colour)
switch(which,
dark = pal(0.45), # 45%
main = pal(0.55), # 55%
light = pal(0.65), # 65%ish
lighter = pal(0.85), # 85%ish
super_light = pal(0.95)
) # 95%ish
}
colour_module <- module(
palettize,
greta_col
)
# look in the environment specified by env, and return a named list of all greta
# arrays in that environment
all_greta_arrays <- function(env = parent.frame(),
include_data = TRUE) {
# all objects in that environment as a named list
all_object_names <- ls(envir = env)
# loop carefully in case there are unfulfilled promises
all_objects <- list()
for (name in all_object_names) {
all_objects[[name]] <- tryCatch(get(name, envir = env),
error = function(e) NULL
)
}
# find the greta arrays
is_greta_array <- are_greta_array(all_objects)
all_arrays <- all_objects[is_greta_array]
# optionally strip out the data arrays
if (!include_data) {
is_data <- vapply(all_arrays,
function(x) is.data_node(get_node(x)),
FUN.VALUE = FALSE
)
all_arrays <- all_arrays[!is_data]
}
all_arrays
}
# suppress the R or python output of R expressions
quietly <- function(expr) {
py_out <- reticulate::py_capture_output(
r_out <- capture.output(expr)
)
out <- c(py_out, r_out)
invisible(out)
}
# evaluate expressions (dag density or gradient), capturing numerical errors
# like matrix inversions as bad samples, and erroring otherwise
cleanly <- function(expr) {
res <- tryCatch(expr, error = function(e) e)
check_for_errors(res)
res
}
# prepare a matrix of draws and return as an mcmc object
#' @noRd
#' @importFrom coda mcmc
prepare_draws <- function(draws, thin = 1) {
draws_df <- data.frame(draws, check.names = FALSE)
draws_df <- na.omit(draws_df)
coda::mcmc(draws_df, thin = thin)
}
build_sampler <- function(initial_values, sampler, model, seed = get_seed(),
compute_options) {
## TF1/2 retracing
## This is where a retracing warning happens
## in mcmc
sampler$class$new(initial_values,
model,
sampler$parameters,
seed = seed,
compute_options = compute_options
)
}
# unlist and flatten a list of arrays to a vector row-wise
unlist_tf <- function(x) {
# flatten each element row-wise and concatenate
x <- lapply(x, flatten_rowwise)
do.call(c, x)
}
# get better names for the scalar elements of a greta array, for labelling mcmc
# samples
get_indices_text <- function(dims, name) {
ndim <- prod(dims)
if (ndim > 1) {
vec <- seq_len(ndim)
if (length(vec)) {
indices <- arrayInd(vec, dims)
}
mid_text <- apply(indices, 1, paste, collapse = ",")
name <- glue::glue("{name}[{mid_text}]")
}
name
}
# given a list 'trace_list' of arrays giving the values of the target greta
# arrays (with their true dimensions), return the ith element, flattened to a
# vector and with elements given informative names
flatten_trace <- function(i, trace_list) {
object <- names(trace_list)[i]
values <- trace_list[[i]]
dim_in <- dim(values)
dim_slice <- dim_in[-1]
dim_out <- c(dim_in[1], prod(dim_slice))
dim(values) <- dim_out
names <- get_indices_text(dim_slice, object)
colnames(values) <- names
values
}
# extract the model information object from mcmc samples returned by
# stashed_samples, and error nicely if there's something fishy
get_model_info <- function(draws) {
check_if_greta_mcmc_list(draws)
model_info <- attr(draws, "model_info")
check_if_model_info(model_info)
model_info
}
sampler_utils_module <- module(
all_greta_arrays,
cleanly,
build_sampler,
prepare_draws,
unlist_tf,
get_indices_text,
flatten_trace,
get_model_info
)
# TF1/2 check remove?
# Is this still needed with the new `tf_function` from TF2?
# I cannot actually currently see uses of `as_tf_function ` in the code
# base currently
# convert a function on greta arrays into a function on corresponding tensors,
# given the greta arrays for inputs. When executed, this needs to be wrapped in
# dag$on_graph() to get the tensors connected up with the rest of the graph
# NOTE: Could use this as a way of getting the functions we need from greta
# we could use this as a way of returning a function that TF recognises
# as a function tensorflow function that returns tensors
as_tf_function <- function(r_fun, ...) {
# run the operation on isolated greta arrays, so nothing gets attached to the
# model real greta arrays in dots
# creating a fake greta array
ga_dummies <- lapply(list(...), dummy_greta_array)
# now run the function on these completely separate ones
ga_out <- do.call(r_fun, ga_dummies)
ga_out
# a function that will act on TF things
function(...) {
tensor_inputs <- list(...)
# if any of these are shapeless, make them into greta scalars (3D)
tensor_inputs <- lapply(
tensor_inputs,
function(x) {
empty_dim <- identical(dim(x), list())
if (empty_dim) {
x <- tf$reshape(x, shape(1, 1, 1))
}
x
}
)
# create a sub-dag for these operations, from ga_dummies to ga_out
if (!is.list(ga_out)) {
ga_out <- list(ga_out)
}
targets <- c(ga_out, ga_dummies)
sub_dag <- dag_class$new(targets)
# TF1/2 check remove
# `get_default_graph()` doesn't work with either eager execution or
# `tf.function`.
# use the default graph, so that it can be overwritten when this is called?
# alternatively fetch from above, or put it in greta_stash?
# sub_dag$tf_graph <- tf$compat$v1$get_default_graph()
sub_tfe <- sub_dag$tf_environment
# pass on the batch size, used when defining data
# - how many chains or whatever to use
# get the batch size from the input tensors - it should be written to the
# stash by the main dag - but only if a main dag is defined. What about in calculate?
sub_tfe$batch_size <- get_batch_size()
# set the input tensors as the values for the dummy greta arrays in the new
# tf_environment
node_dummies <- lapply(ga_dummies, get_node)
tf_names <- lapply(node_dummies, sub_dag$tf_name)
for (i in seq_along(tf_names)) {
assign(tf_names[[i]], tensor_inputs[[i]], envir = sub_tfe)
}
# have output node define_tf in the new environment, with data defined as
# constants
# trying to not get them to use placeholders
# (TF can have data as a placeholder or a constant)
# (using a constant is expensive, normally)
greta_stash$data_as_constants <- TRUE
# TODO explore changin this to previous state
on.exit(greta_stash$data_as_constants <- NULL)
tf_out <- list()
for (i in seq_along(ga_out)) {
# define the output nodes
node_out <- get_node(ga_out[[i]])
node_out$define_tf(sub_dag)
# get the tensors for the outputs
tf_out[[i]] <- sub_tfe[[sub_dag$tf_name(node_out)]]
}
if (length(tf_out) == 1) {
tf_out <- tf_out[[1]]
}
tf_out
}
}
is_windows <- function() {
identical(.Platform$OS.type, "windows")
}
greta_array_ops_module <- module(as_tf_function)
# utilities to export via .internals
utilities_module <- module(
misc = misc_module,
dummy_arrays = dummy_array_module,
greta_array_operations = greta_array_ops_module,
samplers = sampler_utils_module,
colours = colour_module
)
# remove empty strings
base_remove_empty_string <- function(string){
string[string != ""]
}
other_install_fail_msg <- function(error_passed){
# drop ""
error_passed <- base_remove_empty_string(error_passed)
cli::format_error(
message = c(
"Stopping as installation of {.pkg greta} dependencies failed",
"An error occured:",
"{.code {cat(error_passed)}}",
"You can perform the entire installation manually with:",
"{.code reticulate::install_miniconda()}",
"Then:",
"{.code reticulate::conda_create(envname = 'greta-env-tf2', \\
python_version = '3.8')}",
"Then:",
"{.code reticulate::py_install(
packages = c(
'numpy',
'tensorflow',
'tensorflow-probability'
),
pip = TRUE
)}",
"Then, restart R, and load {.pkg greta} with: {.code library(greta)}",
"If this does not work, lodge an issue on github at:",
"{.url https://github.com/greta-dev/greta/issues/new}"
)
)
}
timeout_install_msg <- function(timeout = 5, py_error = NULL){
msg <- c(
"Stopping as installation of {.pkg greta} dependencies took longer than \\
{timeout} minutes",
"You can increase the timeout time by increasing the {.arg timeout} \\
argument.",
"For example, to wait 5 minutes:",
"{.code install_greta_deps(timeout = 5)}",
"Alternatively, you can perform the entire installation with:",
"{.code reticulate::install_miniconda()}",
"Then:",
"{.code reticulate::conda_create(envname = 'greta-env-tf2', \\
python_version = '3.8')}",
"Then:",
"{.code reticulate::py_install(
packages = c(
'numpy',
'tensorflow',
'tensorflow-probability'
),
pip = TRUE
)}",
"Then, restart R, and load {.pkg greta} with: {.code library(greta)}"
)
if (nchar(py_error) == 0) {
py_error <- NULL
}
if (is.null(py_error)){
cli::format_error(
message = msg
)
} else {
msg <- c(
msg,
"Additionally, the following error appeared:",
"{cat({py_error})}"
)
cli::format_error(
message = msg
)
}
}
is_DiagrammeR_installed <- function(){
requireNamespace("DiagrammeR", quietly = TRUE)
}
check_if_software_available <- function(software_available,
version = NULL,
ideal_version = NULL,
software_name){
cli::cli_process_start("checking if {.pkg {software_name}} available")
# if the software is detected
if (!software_available) {
cli::cli_process_failed(
msg_failed = "{.pkg {software_name}} not available"
)
}
if (software_available) {
if (is.null(ideal_version) & !is.null(version)){
cli::cli_process_done(
msg_done = "{.pkg {software_name}} (v{version}) available"
)
}
# if it has a version and ideal version
has_ideal_version <- !is.null(version) & !is.null(ideal_version)
if (has_ideal_version){
version_chr <- paste0(version)
version_match <- compareVersion(version_chr, ideal_version) == 0
if (version_match){
cli::cli_process_done(
msg_done = "{.pkg {software_name}} (v{version}) available"
)
}
if (!version_match){
cli::cli_process_failed(
msg_failed = "{.pkg {software_name}} available, \\
however {.strong {ideal_version}} is needed and \\
{.strong {version}} was detected"
)
}
# if there is no version for the software
} else if (is.null(version)){
cli::cli_process_done(
msg_done = "{.pkg {software_name}} available"
)
}
}
}
compare_version_vec <- Vectorize(
FUN = compareVersion,
vectorize.args = "b",
SIMPLIFY = TRUE
)
#' Greta Situation Report
#'
#' This checks if Python, Tensorflow, Tensorflow Probability, and the greta
#' conda environment are available, and also loads and initialises python
#'
#' @return Message if greta is ready to use
#' @export
#'
#' @examples
#' \dontrun{
#' greta_sitrep()
#' }
greta_sitrep <- function(){
check_if_software_available(software_available = have_python(),
version = reticulate::py_version(),
software_name = "python")
check_if_software_available(software_available = have_tf(),
version = version_tf(),
software_name = "TensorFlow")
check_if_software_available(software_available = have_tfp(),
version = version_tfp(),
software_name = "TensorFlow Probability")
check_if_software_available(software_available = have_greta_conda_env(),
software_name = "greta conda environment")
software_available <- c(
python = have_python(),
tf = have_tf(),
tfp = have_tfp(),
greta_env = have_greta_conda_env()
)
if (!all(software_available)) {
check_tf_version("warn")
} else if (all(software_available)) {
software_version <- data.frame(
software = c(
"python",
"tfp",
"tf"
),
current = c(
paste0(reticulate::py_version()),
paste0(version_tf()),
paste0(version_tfp())
),
# versions must be at least this version
ideal = c(
"3.8",
"2.15.0",
"0.23.0"
)
)
software_version$match <- c(
compareVersion(software_version$current[1], software_version$ideal[1]) >= 0,
compareVersion(software_version$current[2], software_version$ideal[2]) >= 0,
compareVersion(software_version$current[3], software_version$ideal[3]) >= 0
)
if (all(software_version$match)){
check_tf_version("none")
cli::cli_alert_info("{.pkg greta} is ready to use!",
wrap = TRUE)
} else {
check_tf_version("warn")
}
}
}
# adapted from https://github.com/rstudio/tensorflow/blob/main/R/utils.R
is_mac_arm64 <- function() {
if (nzchar(Sys.getenv("GRETA_M1_MESSAGE_TESTING"))) {
return(TRUE)
}
si <- Sys.info()
is_darwin <- si[["sysname"]] == "Darwin"
is_arm64 <- si[["machine"]] == "arm64"
is_darwin && is_arm64
}
read_char <- function(path){
trimws(readChar(path, nchars = file.info(path)$size))
}
create_temp_file <- function(path){
file_path <- tempfile(path, fileext = ".txt")
file.create(file_path)
return(file_path)
}
#' @title Set GPU or CPU usage
#' @name gpu_cpu
#' @description These functions set the use of CPU or GPU inside of greta. They
#' simply return either "GPU" or "CPU", but in the future may handle more
#' complexity. These functions are passed to `compute_options` inside of a few
#' functions: [mcmc()], [opt()], and [calculate()].
#' @export
gpu_only <- function(){
"GPU"
}
#' @rdname gpu_cpu
#' @export
cpu_only <- function(){
"CPU"
}
compute_text <- function(n_cores, compute_options){
ifelse(
test = n_cores == 1,
yes = "each on 1 core",
no = ifelse(
test = compute_options == "CPU",
yes = glue::glue("on up to {n_cores} {compute_options} cores"),
# "on GPU"
no = glue::glue("on {compute_options}")
)
)
}
connected_to_draws <- function(dag, mcmc_dag) {
names(dag$node_list) %in% names(mcmc_dag$node_list)
}
is_using_gpu <- function(x){
x == "GPU"
}
is_using_cpu <- function(x){
x == "CPU"
}
`%||%` <- function(x, y) if (is.null(x)) y else x
message_if_using_gpu <- function(compute_options){
if (is_using_gpu(compute_options)) {
if (getOption("greta_gpu_message") %||% TRUE){
cli::cli_inform(
c(
"NOTE: When using GPU, the random number seed may not always be \\
respected (results may not be fully reproducible).",
"For more information, see details of the {.code compute_options} \\
argument in {.code ?calculate}.",
"You can turn off this message with:",
"{.code options(greta_gpu_message = FALSE)}"
)
)
}
}
}
n_dim <- function(x) length(dim(x))
is_2d <- function(x) n_dim(x) == 2
is.node <- function(x, ...){
inherits(x, "node")
}
is.data_node <- function(x, ...){
inherits(x, "data_node")
}
is.distribution_node <- function(x, ...){
inherits(x, "distribution_node")
}
is.variable_node <- function(x, ...){
inherits(x, "variable_node")
}
is.greta_model <- function(x, ...){
inherits(x, "greta_model")
}
is.unknowns <- function(x, ...){
inherits(x, "unknowns")
}
is.initials <- function(x, ...){
inherits(x, "initials")
}
node_type_colour <- function(type){
switch_cols <- switch(
type,
variable = cli::col_red(type),
data = cli::col_green(type),
operation = cli::col_cyan(type),
distribution = cli::col_yellow(type)
)
switch_cols
}
extract_unique_names <- function(x){
vapply(
X = x,
FUN = member,
"unique_name",
FUN.VALUE = character(1)
)
}
are_identical <- function(x, y){
vapply(
X = x,
FUN = identical,
FUN.VALUE = logical(1),
y
)
}
#' Vectorised is.null
#'
#' @param x list of things that may contain NULL values
#'
#' @return logical
#' @export
#'
#' @examples
#' is.null(list(NULL, NULL, 1))
#' are_null(list(NULL, NULL, 1))
#' are_null(list(NULL, NULL, NULL))
#' are_null(list(1, 2, 3))
#' is.null(list(1, 2, 3))
are_null <- function(x){
vapply(
x,
is.null,
FUN.VALUE = logical(1)
)
}
are_greta_array <- function(x){
vapply(
x,
is.greta_array,
FUN.VALUE = logical(1)
)
}
have_distribution <- function(x){
vapply(
x,
has_distribution,
FUN.VALUE = logical(1)
)
}
is_windows <- function() {
identical(.Platform$OS.type, "windows")
}
is_mac <- function() {
as.logical(Sys.info()["sysname"] == "Darwin")
}
is_linux <- function() {
identical(tolower(Sys.info()[["sysname"]]), "linux")
}
os_name <- function(){
os <- c(
windows = is_windows(),
mac = is_mac(),
linux = is_linux()
)
names(which(os))
}
# semantic version finder
closest_version <- function(current, available){
available <- sort(available)
not_available <- !(current %in% available)
current_gt_available <- all(current > available)
current_lt_available <- all(current < available)
current_btn_available <- any(current > available) && any(current < available)
pick_largest <- not_available && current_gt_available
pick_smallest <- not_available && current_lt_available
if (pick_largest) {
closest <- max(available)
}
if (pick_smallest) {
closest <- min(available)
}
if (current_btn_available){
version_gt <- current > available
closest <- max(available[version_gt])
}
return(closest)
}
outside_version_range <- function(provided, range) {
version_num <- numeric_version(provided)
above_range <- all(version_num > range)
below_range <- all(version_num < range)
outside_range <- above_range || below_range
outside_range
}
pretty_dim <- function(x) paste0(dim(x), collapse = "x")
are_initials <- function(x){
vapply(
X = x,
FUN = is.initials,
FUN.VALUE = logical(1)
)
}
n_warmup <- function(x){
x_info <- attr(x, "model_info")
x_info$warmup
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.