cpop.grid<-function(y,x,grid,beta,sigsquared)
{
##dyn.load("coeff.updateR.so")
########
# CPOP algorithm for finding the best segmentation of data for a change-in-slope model
#
# best is defined in terms of minimising
#
# sum_{i=1}^n1/(sigma_i^2) (y_i-f_i)^2+m*beta -(*)
#
# where y_i are data, f_i is the fitted mean at point i; m is the number of changepoints
# and we consider all continuous piecewise-linear functions for f. Changepoints thus
# correspond to changes in slope.
#
# Input is y -- vector of data; and beta a positive constant that penalises additional
# changes; sigsquared -- an estimate of residual variance
#
# useCprune determine whether (faster) C code is used within the algorithm;
# printinteration determines whether updates of progress are printed.
#
# Output: list of minimum value of (*) together with the inferred changepoints. This list will include 0 and n as first/last entries.
#
########
####CHANGE-- INPUT x AS LIST OF LOCATIONS
####sigsquared an vary with x
CPOP.grid.impl<-function(y,x,grid=NULL,beta,sigsquared=1,printiteration=FALSE){
n<-length(y)
if(is.null(x)) x= 1:n
if(is.null(grid)) grid=x ###SET grid to x if not defined
if(max(grid)<max(x)) grid=c(grid,max(x))
if(length(sigsquared)!=n) sigsquared=rep(sigsquared[1],n)
ngrid <- length(grid) ##ngrid is the number of grid points -- below n becomes ngrid throughout
##CHANGE HERE -- x0 is grid with an addition of a 0th grid point. Defined in terms of grid not x
x0 <- c(2*x[1]-x[2],grid)
##THESE UPDATES ARE CHANGED.
S<-0
SS<-0
SX<-0
SX2<-0
SXY<-0
SP<-0
for(i in 1:ngrid){
##set index to be which observations are in the interval
index <- (1:n)[x>x0[i]&x<=x0[i+1]]
if(length(index)>0){##change in summaries -- sum over observations
S[i+1]<-S[i]+sum(y[index]/sigsquared[index])
SS[i+1]<-SS[i]+sum(y[index]^2/sigsquared[index])
SX[i+1]<-SX[i]+sum(x[index]/sigsquared[index])
SX2[i+1]<-SX2[i]+sum(x[index]^2/sigsquared[index])
SXY[i+1]<-SXY[i]+sum(x[index]*y[index]/sigsquared[index])
SP[i+1]<-SP[i]+sum(1/sigsquared[index])
}else{ ##no observations so no change in summaries
S[i+1]<-S[i]
SS[i+1]<-SS[i]
SX[i+1]<-SX[i]
SX2[i+1]<-SX2[i]
SXY[i+1]<-SXY[i]
SP[i+1]<-SP[i]
}
}
#######
coeffs<-matrix(0,ncol=5,nrow=1) #first two columns are current time point and most recent changepoint, final three are coefficients for cost
coeffs[1,5]<--beta
coeffs[1,1:2]<-c(0,0)
CPvec<-c("0") #vector storing changepoint values, not used in code but required as an output
for(taustar in 1:ngrid){ ##n->ngrid is the number of iterations
new.CPvec<-paste(CPvec,taustar,sep=",")
##update coefficients --THIS HAS BEEN CHANGED FROM CPOP CODE
##CURRENTLY CHANGE ONLY IN R CODE VERSION
new.coeffs <- coeff.update.uneven.var(coeffs,S,SXY,SS,SX,SX2,SP,x0,taustar,beta)
new.coeffs.p <- new.coeffs
if(taustar!=ngrid){##n->ngrid #skip pruning on last step
###################################################pruning bit##########
if(length(new.coeffs[,1])>1){
##added###
###########
keep2 <- prune2.c(new.coeffs.p)
# keep2 <- prune2b(new.coeffs.p) ##find set of functions to keep
new.coeffs.p <- new.coeffs.p[keep2,]
new.CPvec <- new.CPvec[keep2]
}
####PELT PRUNE############################
if(length(new.coeffs)>5 ){
keeppelt<-peltprune(new.coeffs,beta)
coeffs<-coeffs[keeppelt,]
CPvec<-CPvec[keeppelt]
}
}
##########################################
CPvec<-c(CPvec,new.CPvec) #prunes both CPvec vector and coeffs matrix
coeffs<-rbind(coeffs,new.coeffs.p)
#####################################################
if(printiteration==TRUE){
if(taustar%%100==0) cat("Iteration ",taustar,"\n")}
else if(printiteration!=FALSE){stop("printiteration must be a TRUE or FALSE value")}
}
coeffscurr<-coeffs[coeffs[,1]==ngrid,] #matrix of coeffs for end time t=n ##n->ngrid
if(!is.matrix(coeffscurr)){coeffscurr<-t(as.matrix(coeffscurr))} #makes sure coeffscurr is in the right format
##HACK here to make ttemp correct if coeffscurr[,3]==0
ttemp<-coeffscurr[,5]
index <- (1: (length(coeffscurr)/5))[coeffscurr[,3]>0]
if(length(index)>0){
ttemp[index]<-coeffscurr[index,5]-(coeffscurr[index,4]^2)/(4*coeffscurr[index,3])}
mttemp<-min(ttemp)
num<-which(ttemp==mttemp)
CPveccurr<-CPvec[coeffs[,1]==ngrid] ##n->ngrid
CPS<-eval(parse(text=paste("c(",CPveccurr[num],")")))
return(list(min.cost=mttemp,changepoints.index=CPS,changepoints=grid[CPS])) #return min cost and changepoints
}
########################################################################################
###################### coeff update#####################################################
### NEW VERSION -- UNEVEN LOCATIONS AND VARYING MEAN
###avoids loop
########################################################################################
coeff.update.uneven.var <- function(coeffs,S,SXY,SS,SX,SX2,SP,x0,taustar,beta){
coeff.new<-coeffs
coeff.new[,2] <- coeffs[,1]
coeff.new[,1]<-taustar
sstar<-coeff.new[,2]
Xs<-x0[sstar+1]
Xt<-x0[taustar+1]
seglen <- Xt-Xs
#A<-(SX2[taustar+1]-SX2[sstar+1]-2*Xs*(SX[taustar+1]-SX[sstar+1])+(SP[taustar+1]-SP[sstar+1])*Xs^2)/(seglen^2)
#B<- 2*( (Xt+Xs)*(SX[taustar+1]-SX[sstar+1])-(SP[taustar+1]-SP[sstar+1])*Xt*Xs-(SX2[taustar+1]-SX2[sstar+1]))/(seglen^2)
#C<-(-2)/(seglen)*(SXY[taustar+1]-SXY[sstar+1]-Xs*(S[taustar+1]-S[sstar+1]))
#D<- (SS[taustar+1]-SS[sstar+1])
#E<-(-2)/(seglen)*(Xt*(S[taustar+1]-S[sstar+1])-(SXY[taustar+1]-SXY[sstar+1]))
#FF<-(SX2[taustar+1]-SX2[sstar+1]-2*Xt*(SX[taustar+1]-SX[sstar+1])+(SP[taustar+1]-SP[sstar+1])*Xt^2)/(seglen^2)
coeffs.cpp<-coeffs_update_cpp(SXY,SX2,S,SS,Xs,SX,SP,seglen,taustar,sstar,Xt)
A<-coeffs.cpp[[1]]
B<-coeffs.cpp[[2]]
C<-coeffs.cpp[[3]]
D<-coeffs.cpp[[4]]
E<-coeffs.cpp[[5]]
FF<-coeffs.cpp[[6]]
m <- length(sstar)
ind1 <- (1:m)[FF==0 & coeffs[,3]==0 & B==0]
ind2 <- (1:m)[FF==0 & coeffs[,3]==0 & B!=0]
ind3 <- (1:m)[!(FF==0 & coeffs[,3]==0)]
if(length(ind1)>0){
coeff.new[ind1,5]<-coeffs[ind1,5]+D[ind1]+beta
coeff.new[ind1,4]<-C[ind1]
coeff.new[ind1,3]<-A[ind1]
}
if(length(ind2)>0){
coeff.new[ind2,5]<-coeffs[ind2,5]+(-E[ind2]-coeffs[ind2,4])/B[ind2]+beta
coeff.new[ind2,4]<-0
coeff.new[ind2,3]<-0
}
if(length(ind3)>0){
coeff.new[ind3,5]<-coeffs[ind3,5]+D[ind3]-(coeffs[ind3,4]+E[ind3])^2/(4*(coeffs[ind3,3]+FF[ind3]))+beta
coeff.new[ind3,4]<-C[ind3]-(coeffs[ind3,4]+E[ind3])*B[ind3]/(2*(coeffs[ind3,3]+FF[ind3]))
coeff.new[ind3,3]<-A[ind3]-(B[ind3]^2)/(4*(coeffs[ind3,3]+FF[ind3]))
}
return(coeff.new)
}
############################################################################################################
##first prune of functions
## xx is matrix of functions
############################################################################################################
prune1 <- function(xx,taustar){
min.vals<-xx[,5]-(xx[,4]^2)/(2*xx[,3])
m <- min(min.vals[xx[,2]==taustar-1])
keep<-c(rep(T,length(min.vals[xx[,2]!=taustar-1])),(min.vals[xx[,2]==taustar-1])<=m)
return(keep) ##keep only those with a smaller minimum.
}
##########################################################################################################
##second pruning
## again x is matrix of quadratics
##version to avoid nested loops
##########################################################################################################
prune2b <- function(x){
Sets<-list()
n <- length(x[,1])
vec <- (1:n)
tcurr <- -Inf
whichfun<-which(x[,3]==min(x[,3])) #which element of vec gives min value at -Infinity--smallest theta^2 coeff; then largest theta coeff; then smallest constant
whichfun<-whichfun[which(x[whichfun,4]==max(x[whichfun,4]))]
whichfun<-whichfun[which(x[whichfun,5]==min(x[whichfun,5]))]
whichfun <- whichfun[1] #####Introduced this to avoid multiple minimima
Sets[[whichfun]]<-c(tcurr)
diffcoeffs <- matrix(NA,nrow=n,ncol=3)
intercepts <- rep(NA,n)
disc <- rep(NA,n)
while(length(vec)>1){ #while functions being considered is bigger than 1
intercepts[1:n]<-NA
diffcoeffs[1:(length(vec)),]<-t(t(x[vec,3:5])-x[whichfun,3:5]) #difference between coeffs at i and current function
disc[1:(length(vec))]<-diffcoeffs[1:(length(vec)),2]^2-4*diffcoeffs[1:(length(vec)),1]*diffcoeffs[1:(length(vec)),3] #discriminent of difference quad
ind1 <- (1:length(vec))[disc[1:(length(vec))]>0 & diffcoeffs[1:(length(vec)),1]==0] ##disc>0 for quadratic to cross.
ind2 <- (1:length(vec))[disc[1:(length(vec))]>0 & diffcoeffs[1:(length(vec)),1]!=0] ##disc>0 for quadratic to cross.
if(length(ind1)>0){
r1 <- - diffcoeffs[ind1,3]/diffcoeffs[ind1,2]
if(sum(r1>tcurr)>0){
intercepts[ind1[r1>tcurr]] <- r1[r1>tcurr]
}
}
if(length(ind2)>0){
r1 <- (-diffcoeffs[ind2,2]-sign(diffcoeffs[ind2,1])*sqrt(disc[ind2]))/(2*diffcoeffs[ind2,1])
r2 <- (-diffcoeffs[ind2,2]+sign(diffcoeffs[ind2,1])*sqrt(disc[ind2]))/(2*diffcoeffs[ind2,1])
##only want roots if > tcurr
if(sum(r1>tcurr)>0){
intercepts[ind2[r1>tcurr]] <- r1[r1>tcurr]
}
if(sum(r1<=tcurr & r2>tcurr)>0){
intercepts[ind2[r1<=tcurr & r2>tcurr]] <- r2[r1<=tcurr & r2>tcurr]
}
}
loggy<-!is.na(intercepts)
loggy[vec==whichfun]<-T
if(!sum(!is.na(intercepts))==0){ #if at least one intercept value is not na
tcurr<-min(intercepts,na.rm=T) #change tcurr to first intercept
whichfunnew<-vec[which(intercepts==tcurr)[1]] #whichfunnew is set as value which first intercept occurs
Sets[[whichfun]]<-c(Sets[[whichfun]],tcurr) #add intercept to current function opt interval (to close it)
if(whichfunnew>length(Sets)){Sets[[whichfunnew]]<-c(tcurr)}else{
Sets[[whichfunnew]]<-c(Sets[[whichfunnew]],tcurr)} #add intercept to new fucntion interval (opening it)
whichfun<-whichfunnew #change current function to new function
}
vec<-vec[loggy[(1:length(vec))]]
}
Sets[[whichfun]]<-c(Sets[[whichfun]],Inf)
output1 <- do.call(rbind,lapply(Sets,length))
return(which(output1[,1]!=0))
}
#############################################################################
#########second pruning in C##################################################
####################################################################################
prune2.c<-function(x){
nrows<-dim(x)[[1]]
# coutput<- .C("prune2R",as.double(as.vector((t(x)))),as.integer(nrows),Sets=integer(nrows))
coutput<-prune(as.vector((t(x))),nrows)
#result<-which(coutput$Sets==1)
result<-which(coutput==1)
return(result)
}
###########################################################################################################
###################################PELT pruning function###################################################
###########################################################################################################
peltprune <- function(x,beta){
if(length(x)==5) return(1)
minx<-x[,5]
index <- (1:dim(x)[1])[x[,3]>0]
if(length(index)>0) minx[index]<-x[index,5]-x[index,4]^2/(4*x[index,3]) ####NEED THIS TO BE x[,5] if x[,4]=x[,3]=0
return(which(minx<=(min(minx)+2*beta)))
}
###########################################################################################################
##################coverts null to na#######################################################################
###########################################################################################################
################end#######################
out<-CPOP.grid.impl(y,x,grid,beta,sigsquared,FALSE)
out$changepoints<-c(x[1],out$changepoints)
return(out)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.