# library(dplyr)
# library(trelliscopejs)
# cpph <- add_holdout_ind(cpp)
# cppfit <- get_fit(cpph, method = "rlm", holdout = TRUE)
# cppsubj <- by_subject(cpph)
# dat <- fit_all_trajectories(cppsubj, cppfit)
# get_fit_holdout_errors(dat)
# get_fit_holdout_mse(dat)
# dat <- dat %>%
# add_all_cogs() %>%
# add_trajectory_plot() %>%
# trelliscope(name = "test")
# pb <- progress::progress_bar$new(
# format = paste0("adding column '", .to, "' [:bar] :percent :current/:total eta::eta"),
# total = nrow(.d), width = getOption("width") - 8)
#' Add a column to a data frame containing trajectory / velocity plots
#'
#' @param dat a data frame nested by subject and containing fits from \code{\link{fit_all_trajectories}}
#' @param z should the trajectory fit be plotted on the z-scale?
#' @param center should the trajectory be centered around the median WHO standard?
#' @param y_var name of y variable to model (usually an anthropometric measure or z-score scaled anthropometric measure)
#' @param x_range a vector specifying the range (min, max) that the superposed WHO growth standard should span on the x-axis
#' @param nadir should a guide be added to the plot showing the location of the nadir? (only valid when z = TRUE)
#' @param recovery age in days at which to plot recovery from nadir (only valid when z = TRUE) - if NULL (default), will not be plotted
#' @param x_units units of age x-axis ("days", "months", or "years")
#' @param width width of the plot
#' @param height height of the plot
#' @examples
#' \dontrun{
#' cppsubj <- by_subject(cpp)
#' cppfit <- get_fit(cpp, method = "rlm")
#' cpptr <- fit_all_trajectories(cppsubj, cppfit)
#' cppplot <- trscope_trajectories(cpptr)
#' cppzplot <- trscope_trajectories(cpptr, z = TRUE, nadir = TRUE, x_units = "months")
#' }
#' @export
add_trajectory_plot <- function(dat, z = FALSE, center = FALSE, y_var = "htcm",
x_range = NULL, nadir = FALSE, recovery = NULL, x_units = "days",
width = 500, height = 520) {
if (is.null(x_range)) {
message("Range for x-axis not supplied... computing from all the data... ",
appendLF = FALSE)
x_range <- get_x_range(dat)
message("done")
}
pb <- progress::progress_bar$new(
format = "adding panels [:bar] :percent :current/:total eta::eta",
total = nrow(dat), width = getOption("width") - 8)
if ("fit" %in% names(dat)) {
if (z) {
panel_fn <- function(x) {
pb$tick()
suppressMessages(plot_z(x, x_range = x_range,
width = width, height = height, x_units = x_units,
nadir = nadir, recovery = recovery))
}
} else {
panel_fn <- function(x) {
pb$tick()
suppressMessages(plot(x, center = center, x_range = x_range,
width = width, height = height, x_units = x_units))
}
}
dat$panel <- trelliscopejs::map_plot(dat$fit, panel_fn)
} else {
panel_fn <- function(x) {
pb$tick()
suppressMessages(plot(dat, subjid = x, y_var = y_var, center = center,
x_range = x_range, width = width, height = height))
}
dat$panel <- trelliscopejs::map_plot(dat$subjid, panel_fn)
}
dat
}
#' @rdname add_trajectory_plot
#' @export
add_velocity_plot <- function(dat, z = FALSE, center = FALSE,
x_range = NULL, nadir = FALSE, recovery = NULL, x_units = "days",
width = 500, height = 520) {
if (is.null(x_range)) {
message("Range for x-axis not supplied... computing from all the data... ",
appendLF = FALSE)
x_range <- get_x_range(dat)
message("done")
}
pb <- progress::progress_bar$new(
format = "adding panels [:bar] :percent :current/:total eta::eta",
total = nrow(dat), width = getOption("width") - 8)
if (z) {
panel_fn <- function(x) {
pb$tick()
suppressMessages(plot_zvelocity(x,
width = width, height = height, xlim = x_range, x_units = x_units))
}
} else {
panel_fn <- function(x) {
pb$tick()
suppressMessages(plot_velocity(x,
width = width, height = height, xlim = x_range, x_units = x_units))
}
}
dat$panel <- trelliscopejs::map_plot(dat$fit, panel_fn)
dat
}
# trscope_resid <- function() {
# }
#' Get the x-axis range across all subjects
#'
#' @param dat object obtained from \code{\link{fit_all_trajectories}}
#' @param pad padding factor - this much space as a multiple of the span of the x range will be added to the min and max
#' @export
get_x_range <- function(dat, pad = 0.07) {
if ("fit" %in% names(dat)) {
rngdat <- dat$fit %>%
purrr::map_df(function(x) {
rng <- c(NA, NA)
if (!is.null(x$xy)) {
tmp <- x$xy$x[!is.na(x$xy$x)]
if (length(tmp) > 0)
rng <- range(x$xy$x)
}
dplyr::data_frame(min = rng[1], max = rng[2])
}) %>%
dplyr::bind_rows()
rng <- c(min(rngdat$min, na.rm = TRUE), max(rngdat$max, na.rm = TRUE))
} else {
rng <- c(
min(purrr::map_dbl(dat$longi, ~ min(.x$agedays, na.rm = TRUE)), na.rm = TRUE),
max(purrr::map_dbl(dat$longi, ~ max(.x$agedays, na.rm = TRUE)), na.rm = TRUE)
)
}
rng + c(-1, 1) * pad * diff(rng)
}
# subj_meta <- get_subj_meta(dat)
# get_subj_cogs <- get_subj_cogs
# get_cp_cogs <- get_cp_cogs
# get_nadir_cogs <- get_nadir_cogs
#' Add a column to a data frame containing cognostics for fitted trajectories and set longitudinal cognostics
#'
#' @param dat a data frame nested by subject and containing fits from \code{\link{fit_all_trajectories}}
#' @param x_units units of age variable ("days", "months", or "years")
#' @param recovery age in days at which to plot recovery from nadir
#' @export
add_all_cogs <- function(dat, x_units = "days", recovery = NULL) {
if ("longi" %in% names(dat)) {
dat <- add_longi_cogs(dat)
}
if ("fit" %in% names(dat)) {
dat <- add_fit_cogs(dat, x_units = x_units, recovery = recovery)
}
dat
}
#' Set longitudinal cognostics for subject-nested data frames
#'
#' @param dat a data frame nested by subject and containing fits from
#' @export
add_longi_cogs <- function(dat) {
if (! "longi" %in% names(dat))
stop("Input to add_trajectory_cogs() must have a column 'longi'.", call. = FALSE)
# make subject-level variables have nice cog descriptions
subj_meta <- get_subj_meta(dat)
for (nm in subj_meta$vars)
dat[[nm]] <- trelliscopejs::cog(dat[[nm]],
desc = subj_meta$labs[[nm]],
type = subj_meta$types[[nm]])
# add min and max haz and waz (if present)
if ("haz" %in% names(dat$longi[[1]])) {
dat$min_haz <- trelliscopejs::cog(
purrr::map_dbl(dat$longi, function(lng) {
min(lng$haz, na.rm = TRUE)
}),
desc = "lowest observed HAZ",
type = "numeric")
dat$min_haz_age <- trelliscopejs::cog(
purrr::map_dbl(dat$longi, function(lng) {
lng$agedays[which.min(lng$haz)]
}),
desc = "age at lowest observed HAZ",
type = "numeric")
dat$max_haz <- trelliscopejs::cog(
purrr::map_dbl(dat$longi, function(lng) {
max(lng$haz, na.rm = TRUE)
}),
desc = "highest observed HAZ",
type = "numeric")
dat$max_haz_age <- trelliscopejs::cog(
purrr::map_dbl(dat$longi, function(lng) {
lng$agedays[which.max(lng$haz)]
}),
desc = "age at highest observed HAZ",
type = "numeric")
}
if ("waz" %in% names(dat$longi[[1]])) {
dat$min_waz <- trelliscopejs::cog(
purrr::map_dbl(dat$longi, function(lng) {
min(lng$waz, na.rm = TRUE)
}),
desc = "lowest observed WAZ",
type = "numeric")
dat$min_waz_age <- trelliscopejs::cog(
purrr::map_dbl(dat$longi, function(lng) {
lng$agedays[which.min(lng$waz)]
}),
desc = "age at lowest observed WAZ",
type = "numeric")
dat$max_waz <- trelliscopejs::cog(
purrr::map_dbl(dat$longi, function(lng) {
max(lng$waz, na.rm = TRUE)
}),
desc = "highest observed WAZ",
type = "numeric")
dat$max_waz_age <- trelliscopejs::cog(
purrr::map_dbl(dat$longi, function(lng) {
lng$agedays[which.max(lng$waz)]
}),
desc = "age at highest observed WAZ",
type = "numeric")
}
get_haz_for_age <- function(lng, days) {
tmp <- lng %>%
filter(!is.na(haz)) %>%
mutate(diff = abs(agedays - days)) %>%
filter(diff < 30) %>%
arrange(diff)
if (nrow(tmp) == 0) {
res <- NA
} else {
res <- tmp$haz[1]
}
res
}
# add haz at closest to 6, 12, 24 months - if within 30 days
if ("haz" %in% names(dat$longi[[1]])) {
dat$haz_1day <- trelliscopejs::cog(
purrr::map_dbl(dat$longi, function(lng) get_haz_for_age(lng, 1)),
desc = "Observed HAZ closest to 1 day",
type = "numeric")
for (mo in c(6, 12, 24)) {
dat[[sprintf("haz_%dmonths", mo)]] <- trelliscopejs::cog(
purrr::map_dbl(dat$longi, function(lng) get_haz_for_age(lng, months2days(mo))),
desc = sprintf("Observed HAZ closest to %d months", mo),
type = "numeric")
}
}
dat
}
#' Add a column to a data frame containing cognostics for fitted trajectories
#'
#' @param dat a data frame nested by subject and containing fits from \code{\link{fit_all_trajectories}}
#' @param x_units units of age variable ("days", "months", or "years")
#' @param recovery age in days at which to plot recovery from nadir
#' @export
add_fit_cogs <- function(dat, x_units = "days", recovery = NULL) {
if (! "fit" %in% names(dat) || !inherits(dat$fit[[1]], "fittedTrajectory"))
stop("Column 'fit' is missing, which is required for these displays.\n",
"Please make sure you pass in an object obtained from fit_all_trajectories().")
dat$cog <- trelliscopejs::map2_cog(dat$fit, dat$longi, function(fit, longi) {
x <- fit
if (is.null(x$resid)) {
n_out <- NA
} else {
n_out <- length(which(abs(x$resid) > (5 * mad(x$resid))))
}
extra <- list(
n_out = trelliscopejs::cog(
n_out,
desc = "number of outlier points with respect to the fit",
type = "integer"
),
n_obs = trelliscopejs::cog(
length(which(!is.na(longi[[x$y_var]]))),
desc = paste("number of non-NA measurements for", x$y_var, "vs.", x$x_var),
type = "integer"
)
)
cp <- get_cp_cogs(x)
nd <- get_nadir_cogs(x, recov_at = recovery, x_units)
do.call(dplyr::data_frame, c(extra, cp, nd))
})
dat
}
get_subj_meta <- function(dat) {
var_summ <- attr(dat, "hbgd")$var_summ
subjvars <- var_summ$variable[var_summ$type == "subject-level"]
subjlabs <- as.list(var_summ$label[var_summ$type == "subject-level"])
names(subjlabs) <- subjvars
subjtypes <- var_summ$vtype[var_summ$type == "subject-level"]
subjtypes[subjtypes == "num"] <- "numeric"
subjtypes[subjtypes == "cat"] <- "factor"
subjtypes <- as.list(subjtypes)
names(subjtypes) <- subjvars
list(
vars = subjvars,
labs = subjlabs,
types = subjtypes
)
}
# # get subject-level cognostics
# get_subj_cogs <- function(x, subj) {
# subjdat <- as.list(x$data[1, subj$vars])
# structure(
# lapply(names(subjdat), function(nm)
# trelliscopejs::cog(subjdat[[nm]],
# desc = subj$labs[[nm]], type = subj$types[[nm]])),
# names = names(subjdat))
# }
get_nadir_cogs <- function(x, recov_at = NULL,
x_units = c("days", "months", "years")) {
x_units <- match.arg(x_units)
x_denom <- switch(x_units,
days = 1,
months = 365.25 / 12,
years = 365.25)
nadir <- get_nadir(x)
res <- list(
nadir_at = trelliscopejs::cog(nadir$at / x_denom,
desc = "age at nadir", type = "numeric"),
nadir_mag = trelliscopejs::cog(nadir$mag,
desc = "magnitude of nadir", type = "numeric")
)
if (!is.null(recov_at)) {
recov <- get_recovery(x, nadir, recov_at)
tmp <- list(
a = trelliscopejs::cog(recov$recov, desc = paste0("recovery at day ", recov_at)))
names(tmp)[1] <- paste0("recov_day", recov_at)
res <- c(res, tmp)
}
res
}
get_cp_cogs <- function(x) {
if (is.null(x$checkpoint$z))
x$checkpoint$z <- NA
if (is.null(x$checkpoint$zcat))
x$checkpoint$zcat <- NA
x$checkpoint$z <- round(x$checkpoint$z, 2)
cpzcogs <- lapply(seq_len(nrow(x$checkpoint)), function(ii) {
trelliscopejs::cog(
x$checkpoint$z[ii],
desc = paste("z-score of", x$y_var, "at", x$checkpoints$x[ii], "days"),
type = "numeric"
)
})
names(cpzcogs) <- paste0("z_day", round(x$checkpoint$x, 0))
cpzcatcogs <- lapply(seq_len(nrow(x$checkpoint)), function(ii) {
trelliscopejs::cog(
x$checkpoint$zcat[ii],
desc = paste("z-score category of", x$y_var, "at", x$checkpoints$x[ii], "days"),
type = "factor"
)
})
names(cpzcatcogs) <- paste0("zc_day", round(x$checkpoint$x, 0))
c(cpzcogs, cpzcatcogs)
}
get_trscope_name <- function(dat, suffix = "") {
paste(dat$y_var, "vs", dat$x_var, dat$method, suffix, sep = "_")
}
check_by_subject <- function(dat) {
if (!is_by_subject(dat))
stop("Argument 'dat' must be a data frame with one row for each 'subjid' - use by_subject() to get data in this form.") # nolint
}
is_by_subject <- function(dat)
"longi" %in% names(dat) && inherits(dat$longi, "list")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.