#!/usr/bin/env Rscript
baseDir <- (function() {
args <- commandArgs(trailingOnly = FALSE)
file.arg.name <- "--file="
script.name <- sub(file.arg.name, "", args[grep(file.arg.name, args)])
script.basename <- dirname(script.name)
return(script.basename)
})()
ParseArgs <- function() {
args <- commandArgs(trailingOnly = TRUE)
print(args)
# read in args, if exists --batch_input, the script will ignore other input args.
tmp <- grepl("--batch-input=", args)
batch.file <- gsub("--batch-input=", "", args[tmp])
print(batch.file)
tmp <- grepl("--outdir=", args)
outdir <- gsub("--outdir=", "", args[tmp])
if (length(outdir) == 0) {
outdir = baseDir
}
print(outdir)
if (length(batch.file) == 0) {
cancer.expression <- args[1]
cancer.category <- args[2]
} else {
cancer.expression <- NULL
cancer.category <- NULL
}
return(list(outdir = outdir, batch = batch.file, expression = cancer.expression, category = cancer.category))
}
## Evaluate the code immediately so that error can be detected as early as possible
cancers <- (function() {
args <- ParseArgs()
cancers.available <- c('kich', 'blca', 'brca', 'cesc', 'gbm', 'hnsc', 'kirp', 'lgg',
'lihc', 'luad', 'lusc', 'prad', 'sarc', 'pcpg', 'paad', 'tgct',
'ucec', 'ov', 'skcm', 'dlbc', 'kirc', 'acc', 'meso', 'thca',
'uvm', 'ucs', 'thym', 'esca', 'stad', 'read', 'coad', 'chol')
if (length(args$batch) != 0) {
cat("Enter batch mode\n")
cancers <- as.matrix(read.table(args$batch, sep=","))
} else {
cancers<- c(args$expression, args$category)
dim(cancers) <- c(1, 2)
}
print(cancers)
for (i in seq(nrow(cancers))) {
cancer.category <- cancers[i, 2]
if (!(cancer.category %in% cancers.available)) {
stop(paste('unknown cancers:', cancer.category))
}
}
return(cancers)
})()
source(paste(baseDir, '/utils.r', sep=''))
##----- Constrained regression method implemented in Abbas et al., 2009 -----##
GetFractions.Abbas <- function(XX, YY, w=NA){
## XX is immune expression data
## YY is cancer expression data
ss.remove=c()
ss.names=colnames(XX)
while(T){
if(length(ss.remove)==0)tmp.XX=XX else{
if(is.null(ncol(tmp.XX)))return(rep(0, ncol(XX)))
tmp.XX=tmp.XX[, -ss.remove]
}
if(length(ss.remove)>0){
ss.names=ss.names[-ss.remove]
if(length(ss.names)==0)return(rep(0, ncol(XX)))
}
if(is.na(w[1]))tmp=lsfit(tmp.XX, YY, intercept=F) else tmp=lsfit(tmp.XX, YY, w, intercept=F)
if(is.null(ncol(tmp.XX)))tmp.beta=tmp$coefficients[1] else tmp.beta=tmp$coefficients[1:(ncol(tmp.XX)+0)]
if(min(tmp.beta>0))break
ss.remove=which.min(tmp.beta)
}
tmp.F=rep(0, ncol(XX))
names(tmp.F)=colnames(XX)
tmp.F[ss.names]=tmp.beta
return(tmp.F)
}
ConvertRownameToLoci <- function(cancerGeneExpression) {
## Extract only the loci information for row name
## Example of origin row name is 'LOC389332|389332'
## Coverted row name is 'LOC389332'
## Args:
## geneExpression: the orginal geneExpression load from .Rdata file
##
## Returns:
## Modified geneExpression
tmp <- strsplit(rownames(cancerGeneExpression), '\\|')
tmp <- sapply(tmp, function(x) x[[1]])
tmp.vv <- which(nchar(tmp) > 1)
rownames(cancerGeneExpression) <- tmp
extracted <- as.matrix(cancerGeneExpression[tmp.vv, ])
colnames(extracted) <- colnames(cancerGeneExpression)
return(extracted)
}
ParseInputExpression <- function(path) {
ret <- read.csv(path, sep='\t', row.names=1)
ret <- as.matrix(ret)
mode(ret) <- 'numeric'
ret <- ConvertRownameToLoci(ret)
return(ret)
}
DrawQQPlot <- function(cancer.exp, immune.exp, name='') {
## q-q plot by sample should look like a straight line.
## Extreme values may saturate for Affy array data, but most of the data should align well.
qq <- qqplot(cancer.exp, immune.exp, xlab='Tumor Expression', ylab='Ref Expression',
main='Sample-Sample Q-Q plot')
mtext(name, col="gray11")
# get part of the points for fit linear, remove bottom 40%, and top 10%
start <- 0.4 * length(qq$x)
end <- 0.9 * length(qq$x)
qq.sub <- list(x=qq$x[start:end], y=qq$y[start:end])
fit <-lm(y ~ x, data=qq.sub)
abline(fit, col="blue")
}
GetOutlierGenes <- function (cancers) {
## Return a union of outlier genes.
## The top 5 expressed genes in each sample is treated as outlier here.
outlier.total <- c()
for (i in seq(nrow(cancers))) {
cancer.expFile <- cancers[i, 1]
cancer.expression <- ParseInputExpression(cancer.expFile)
for (j in 1:ncol(cancer.expression)) {
outlier <- rownames(cancer.expression)[tail(order(cancer.expression[,j]), 5)]
outlier.total <- c(outlier.total, outlier)
}
}
return(unique(outlier.total))
}
main <- function() {
# help_msg = 'Usageļ¼
# For single run: Rscript regression.R expFile cancer_catlog
# For batch run: Rscript regression.R --batch_input=table.txt
# '
# cat(help_msg)
args <- ParseArgs()
TimerINFO('Loading immune gene expression')
immune <- LoadImmuneGeneExpression()
immune.geneExpression <- immune$genes
immune.cellTypes <- immune$celltypes
outlier.genes <- sort(GetOutlierGenes(cancers))
print(paste("Outlier genes:", paste(outlier.genes, collapse=' ')))
dir.create(args$outdir, showWarnings = FALSE, recursive = TRUE)
if (!dir.exists(paste(args$outdir, '/results', sep=''))) {
dir.create(paste(args$outdir, '/results', sep=''))
}
abundance.score.matrix <- c()
pdf(paste(args$outdir, '/results/output.pdf', sep=''))
for (i in 1:nrow(cancers)) {
cancer.expFile <- cancers[i, 1]
cancer.category <- cancers[i, 2]
gene.selected.marker.path <- paste(baseDir,
'/data/precalculated/genes_', cancer.category, '.RData',
sep='')
cancer.expression <- ParseInputExpression(cancer.expFile)
index <- !(row.names(cancer.expression) %in% outlier.genes)
cancer.expression <- cancer.expression[index, , drop=FALSE]
cancer.colnames <- colnames(cancer.expression)
TimerINFO(paste("Removing the batch effect of", cancer.expFile))
for (j in 1:length(cancer.colnames)) {
DrawQQPlot(cancer.expression[,j], immune.geneExpression[,1], name=cancer.colnames[j])
}
tmp <- RemoveBatchEffect(cancer.expression, immune.geneExpression, immune.cellTypes)
cancer.expNorm <- tmp[[1]]
immune.expNormMedian <- tmp[[3]]
for (j in 1:length(cancer.colnames)) {
DrawQQPlot(cancer.expNorm[,j], immune.expNormMedian[,1],
name=paste("After batch removing and aggregating for", cancer.colnames[j]))
}
gene.selected.marker <- get(load(gene.selected.marker.path))
gene.selected.marker <- intersect(gene.selected.marker, row.names(cancer.expNorm))
XX = immune.expNormMedian[gene.selected.marker, c(-4)]
YY = cancer.expNorm[gene.selected.marker, , drop=FALSE]
for (j in 1:length(cancer.colnames)) {
fractions <- GetFractions.Abbas(XX, YY[,j])
print (paste("Fractions for", cancer.expFile, cancer.colnames[j]))
print (fractions)
barplot(fractions, cex.names=0.8, names.arg=names(fractions), xlab="cell type", ylab="abundance",
main=paste("Abundance estimation for", cancer.colnames[j]))
box()
abundance.score.matrix <- cbind(abundance.score.matrix, fractions)
colnames(abundance.score.matrix)[ncol(abundance.score.matrix)] <- cancer.colnames[j]
}
}
dev.off()
write.table(abundance.score.matrix, paste(args$outdir, '/results/score_matrix.txt', sep=''),
sep="\t", quote=FALSE, row.names=TRUE, col.names=NA)
}
main()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.