#' Run spatial verification on a (for now) deterministic forecast
#'
#' @param dttm A vector of date time strings to read. Can be in YYYYMMDD,
#' YYYYMMDDhh, YYYYMMDDhhmm, or YYYYMMDDhhmmss format. Can be numeric or
#' character. \code{\link[harpCore]{seq_dttm}} can be used to generate a
#' vector of equally spaced date-time strings.
#' @param parameter The parameters to read as a character vector.
#' @param lead_time The lead times to read as a numeric vector.
#' Should be in the units that are also used in fc_file_template.
#' @param lt_unit The unit used for lead_time. Can be "h" (hours), "m" (minutes), "s" (seconds)
#' @param stations The list of the station with the same format as harpCore::station_list.
#' the stations outside the domain interior will be excluded.
#' @param padding_i Number of grid points to define the domain interior in the x direction.
#' @param padding_j Number of grid points to define the domain interior in the y direction.
#' @param scores HiRA and basic scores
#' me: Multi Event
#' pragm: Pragramtic
#' csrr: Conditional Square Root RPS
#' bias: Bias from area mean.
#' mse: Mean Squared Error from area mean.
#' mae: Mean Absolute Error from area mean.
#' if NULL then all available scores will be calculated.
#' @param obs_path Path to the observation files
#' @param obsfile_template Template of observation files.
#' @param fcst_model The name of the (deterministic or EPS) model.
#' @param fc_file_path The top level path for the forecast files to read.
#' @param fc_file_template The file type to generate the template for. Can be
#' "harmoneps_grib", "harmeoneps_grib_fp", "harmoneps_grib_sfx", "meps_met",
#' "harmonie_grib", "harmonie_grib_fp", "harmone_grib_sfx", "vfld", "vobs", or
#' "fctable". If anything else is passed, it is returned unmodified. In this
#' case substitutions can be used. Available substitutions are \{YYYY\} for
#' year, \{MM\} for 2 digit month with leading zero, \{M\} for month with no
#' leading zero, and similarly \{DD\} or \{D\} for day, \{HH\} or \{H\} for
#' hour, \{mm\} or \{m\} for minute. Also \{LDTx\} for lead time and \{MBRx\}
#' for ensemble member where x is the length of the string including leading
#' zeros - can be omitted or 2, 3 or 4. Note that the full path to the file
#' will always be file_path/template.
#' @param fc_file_format The format of the files to read. Can be e.g. "fa" or "grib".
#' @param fc_file_opts A list with format-specific options for the reader function.
#' @param fc_accumulation The accumulation type of the forecast. This is only used for
#' accumulated parameters (e.g. precipitation). NULL signifies that the field is accumulated
#' from the start of the model run. Otherwise this should be a string containing a numerical value
#' and a time unit, e.g. "15m" or "1h".
#' @param window_sizes Scales used for fuzzy methods like FSS. A vector of box sizes.
#' All values must be odd integers (so the central point is really in the center of a box).
#' @param thresholds Thresholds used for FSS, ...
#' @param sqlite_path If specified, SQLite files are generated and written to
#' this directory.
#' @param sqlite_file Name of SQLite file.
#' @param return_data If TRUE, the result is returned as a list of tables.
#' @param ... Not used at thispoint (more info to be added).
#'
#' @return A list containting tibbles for all scores.
#' @export
verify_hira <- function(dttm,
parameter,
lead_time = harpSpatial_hira_conf$lead_time, # seq(0,36,3)
lt_unit = harpSpatial_hira_conf$lt_unit, #"h",
# HiRA
stations = harpSpatial_hira_conf$stations,
padding_i = harpSpatial_hira_conf$padding_i,
padding_j = harpSpatial_hira_conf$padding_j,
scores = harpSpatial_hira_conf$scores,
# members = harpSpatial_hira_conf$members, #NULL,
# members_out = members,
# lags = harpSpatial_hira_conf$lags, #NULL,
obs_path = harpSpatial_hira_conf$obs_path,
obsfile_template = harpSpatial_hira_conf$obsfile_template,
fcst_model = harpSpatial_hira_conf$fcst_model,
fc_file_path = harpSpatial_hira_conf$fc_file_path, # "",
fc_file_template = harpSpatial_hira_conf$fc_file_template, #"",
fc_file_format = harpSpatial_hira_conf$fc_file_format, #"fa",
fc_file_opts = harpSpatial_hira_conf$fc_file_opts, #list(),
#fc_domain = harpSpatial_hira_conf$fc_domain, #NULL,
#fc_interp_method = harpSpatial_hira_conf$fc_interp_method, #"closest",
fc_accumulation = harpSpatial_hira_conf$fc_accumulation, #NULL,
#ob_file_path = harpSpatial_hira_conf$ob_file_path, #"",
#ob_file_template = harpSpatial_hira_conf$ob_file_template, #"",
#ob_file_format = harpSpatial_hira_conf$ob_file_format, #"hdf5",
#ob_file_opts = harpSpatial_hira_conf$ob_file_opts, #list(),
#ob_domain = harpSpatial_hira_conf$ob_domain, #NULL,
#ob_interp_method = harpSpatial_hira_conf$ob_interp_method, #"closest",
#ob_accumulation = harpSpatial_hira_conf$ob_accumulation, #"15m",
#verif_domain = harpSpatial_hira_conf$verif_domain, #NULL,
#use_mask = harpSpatial_hira_conf$use_mask, #FALSE,
window_sizes = harpSpatial_hira_conf$window_sizes, #c(1, 3, 5, 11, 21),
thresholds = harpSpatial_hira_conf$thresholds, #c(0.1, 1, 5, 10),
sqlite_path = harpSpatial_hira_conf$sqlite_path, #NULL,
sqlite_file = harpSpatial_hira_conf$sqlite_file, #"harp_hira_scores.sqlite",
return_data = FALSE) {
# In this script I assume that the observations are ready to be used
members <- NULL
# TODO: we may need more options! masked interpolation, options by score,
prm <- harpIO::parse_harp_parameter(parameter)
# For efficiency, we use a slightly counter-intuitive loop order
# we don't loop over forecast date and then lead time,
# because that would cause excessive re-reading (or caching) of observations.
# Rather, we loop over all observation times
# and then over all forecasts valid for those times.
# Close to start_date and end_date you must make sure not to read beyond the time window.
# TODO: to be even more efficient, we could try to
# - open (&parse) FC fields only once
# - read accumulated fields only once (e.g. "acc3h = 6h - 3h" also re-uses
# the 3h field)
# But that would require extensive "caching", which may end up even slower.
# Alternative strategy: loop by fcdate, and cache all obs in a list by leadtime
# next fcdate -> "ldt -= by" ; drop negative ldt ; read missing obs
# For an accumulated variable (precip), the minimum lead time is
# the accumulation time. Otherwise zero.
# some date handling first : create vectors of date_time class
if (is.null(window_sizes)) {
stop("`window_sizes` is null")
}
thresholds <- thresholds[order(thresholds)] # make sure that thresolds are ordered ASC
if (missing(dttm)) {
stop("`dttm` is not passed.")
}
# check scores
all_scores <- names(hira_scores())
if (is.null(scores)) {
scores <- all_scores
} else
{
all_scores <- sub("^hira_", "", all_scores)
if (!all(scores %in% all_scores)) {
not_supported <- scores[!(scores %in% all_scores)]
stop(paste("The following scores are not supprted: ",
paste(not_supported, collapse = ", ")))
}
scores <- sapply(scores, function (x) paste0("hira_",x))
}
# convert lead_time to seconds and remove lead_times smaller than accum
# we don't have 3h precip at 0h forecast.
# also, we probably want lead_time in steps of the accumulation
lt_scale <- harpIO:::units_multiplier(lt_unit)
lead_time <- lead_time * lt_scale
if (prm$accum > 0) {
lead_time <- lead_time[which(lead_time >= prm$accum & lead_time %% prm$accum == 0)]
}
# dttm is a vector of STRINGS
# we want datetime objects to which we can add the lead_time
all_fc_dates <- harpCore:::unixtime_to_dttm(harpCore:::as_unixtime(dttm))
all_ob_dates <- (rep(all_fc_dates, each=length(lead_time)) + lead_time ) %>%
unique() %>%
sort()
message("Running HiRA verification.")
message("Forecast dates: ", paste(dttm, collapse = " "))
message("Lead times: ", paste(lead_time / lt_scale, collapse = " "))
message("Observation dates: ", paste(all_ob_dates, collapse = " ; "))
# the re-gridding weights will come here:
init <- list()
# The read functions
# Most read functions can't deal with accumulated parameters like AccPcp1h
# We will need special "accumulator functions"
# FIXME: also, we must MODIFY the parameter!
# - correct accumulation
# - maybe even a different field -> need a "modifier"???
# if (!is.null(ob_param$accum)
#ob_param <- prm
#123 ob_param$accum <- readr::parse_number(ob_accumulation) *
#123 harpIO:::units_multiplier(ob_accumulation)
# FIXME: avoid reading domain information for every file (obs and fc)
# BUT: we need it once to initialise the regridding. Use "get_domain(file)".
# FIXME: should we do the regridding within the read_grid call?
#1 HiRA Load all point observations
read_obs <- function (domain) {
.hira_stations <- stations
.indices <- meteogrid::point.closest.init(domain=domain, lon=stations$lon, lat=stations$lat,
mask=NULL, pointmask=NULL, force=FALSE)
station_with_indices <- bind_cols(.hira_stations,.indices)
# Assuming indices is a data frame
.selected_stations <- station_with_indices %>%
drop_na()
if ( is.null(.selected_stations) || nrow(.selected_stations) == 0 ) {
stop("No stations found inside the domain.")
}
# Go away from the boundaries
.selected_stations <- .selected_stations %>%
filter(i + padding_i <= domain$nx, j + padding_j <= domain$ny,
0 < i - padding_i, 0 < j - padding_j) %>% arrange(SID)
# TODO: check if the selected stations is empty
fields_to_remove <- intersect(names(.selected_stations),c("lat", "lon", "elev"))
reduced_selected_stations <- .selected_stations %>% select(-one_of(fields_to_remove))
obs <- harpIO::read_point_obs(
dttm = all_ob_dates,
parameter = parameter,
obs_path = obs_path,
obsfile_template = obsfile_template,
gross_error_check = TRUE,
stations = reduced_selected_stations$SID)
obs <- dplyr::left_join(obs, reduced_selected_stations, by = "SID")
.interp_weights <- meteogrid::point.interp.init(domain=domain,
lon=.selected_stations$lon,
lat=.selected_stations$lat,
method="nearest")
.selected_stations <- .selected_stations %>% select(c(SID,i,j))
list( obs = obs, interp_weights = .interp_weights , selected_stations = .selected_stations)
}
# this will be set when reading the first fcfield
domain <- NULL
all_obs <- NULL
interp_weights <- NULL
selected_stations <- NULL
selected_station_ids <- NULL
#1
# FIXME: if (!is.null(members) && length(members) > 1)
# NOTE: lead_time in original units
# FIXME: det_model vs eps_model...
# FIXME: for eps, either read_grid on single netcdf/grib2 or on multiple FA/GRIB
# if "members" is defined (and length > 1) but {MBRx} is not in the template -> single file
if (is.null(members)) {
get_fc <- function(fcdate, lead_time) {
fcfile <- generate_filenames(
file_date = fcdate,
lead_time = lead_time,
parameter = parameter,
det_model = fcst_model,
file_path = fc_file_path,
file_template = fc_file_template)
try(do.call(harpIO::read_grid,
c(list(file_name = fcfile, file_format = fc_file_format,
parameter = parameter, lead_time = lead_time,
file_format_opts = fc_file_opts))))
}
} else {
# for EPS models, we try to get the members into a 3D geogrid array.
# very fast for passing to Rccp functions.
get_fc <- function(fcdate, lead_time) {
fcfile <- generate_filenames(
file_date = fcdate,
lead_time = lead_time,
parameter = parameter,
eps_model = fcst_model,
members = members,
file_path = fc_file_path,
file_template = fc_file_template)
if (length(fcfile) == 1) {
try(do.call(harpIO::read_grid,
c(list(file_name = fcfile, file_format = fc_file_format,
parameter = parameter, lead_time = lead_time),
fc_file_opts)))
} else {
try(lapply(fcfile, harpIO::read_grid, file_format = fc_file_format,
parameter = parameter, lead_time = lead_time, members=members,
unlist(fc_file_opts)))
}
}
}
# We will write to SQL only at the end (more efficient),
ncases <- length(dttm) * length(lead_time)
message("expected ncases= ", ncases)
score_list <- hira_scores()[scores]
# score_templates <- lapply(names(score_list), function(sc) hira_scores(score = sc))
# names(score_templates) <- score_list
# Define the list of score tables.
score_tables <- vector("list", length(score_list))
#names(score_tables) <- sapply( names(score_list) , function(x) paste0("hira_", x))
names(score_tables) <- names(score_list)
# some score funtions calculate several scores together
# we don't want to call them twice...
score_function_list <- as.vector(unique(sapply(score_list, function(x) x$func)))
score_function_subset <- lapply(
score_function_list,
function(msc)
names(which(sapply(score_list, function(x) x$func == msc )))
)
names(score_function_subset) <- score_function_list
hira_strategies <- unique(sapply(score_list, function(x) x$index))
hira_strategies <- as.vector(hira_strategies[ hira_strategies >-1 ])
#do_basic_scores <- "basic" %in% names(score_list)
message("score functions: ", paste(score_function_list, collapse=" "))
# MAIN LOOP
case <- 1
for (ob in seq_along(all_ob_dates)) { # (obdate in all_ob_dates) looses POSIXct class
obdate <- all_ob_dates[ob]
message("=====\nobdate: ", format(obdate, "%Y%m%d-%H%M"))
obsvect_full <- NULL
# find forecasts valid for this date/time
# intersect drops the POSIXct class
# valid_fc_dates <- intersect(obdate - lead_time, dttm)
valid_fc_dates <- (obdate - lead_time)[which((obdate - lead_time) %in% all_fc_dates)]
message("valid FC dates: ", paste(format(valid_fc_dates, "%Y%m%d-%H%M"), collapse = " "))
# inner loop
for (fc in seq_along(valid_fc_dates)) {
fcdate <- valid_fc_dates[fc]
ldt <- (as.numeric(obdate) - as.numeric(fcdate)) # in seconds !
message(
" +++ fcdate = ", format(fcdate,"%Y%m%d-%H%M"),
" +++ ldt = ", ldt / lt_scale, lt_unit
)
fcfield <- get_fc(fcdate, ldt/lt_scale)
if (inherits(fcfield, "try-error")) { # e.g. missing forecast run
message("..... Forecast not found. Skipping.", immediate = TRUE)
next
}
if(is.null(domain)) {
# ony done once
domain <- attr(fcfield, "domain")
# TODO: check if the domain is empty or null
}
if(is.null(all_obs)){
readed <- read_obs(domain)
all_obs <- readed$obs
interp_weights <- readed$interp_weights
selected_stations <- readed$selected_stations
selected_station_ids <- selected_stations %>% select(SID)
}
##
if (is.null(obsvect_full)){
obsvect_full <- dplyr::filter(all_obs, valid_dttm == obdate)
obsvect_full <- left_join(selected_station_ids,obsvect_full, by="SID")
names(obsvect_full)[names(obsvect_full) == parameter] <- "obs"
}
if (prm$accum > 0) {
if (is.null(fc_accumulation) || fc_accumulation < 0) {
if (ldt > prm$accum) { # if ldt==accum, you don't need to decumulate
zstep <- get_fc(fcdate, (ldt - prm$accum) / lt_scale)
if (inherits(zstep, "try-error")) {
message(".... Forecast sup-step not found. Skipping.", immediate = TRUE)
next
}
fcfield <- fcfield - zstep
}
} else {
# In rare cases the forecast model needs "accumulating" rather than "decumulating"
# e.g. when verifying INCA against radar
fstep <- readr::parse_number(fc_accumulation) *
harpIO:::units_multiplier(fc_accumulation)
if (fstep == prm$accum) { # this is easy !
# nothing to do
} else if (fstep > prm$accum) { # this is easy !
stop("The chosen accumulation time is smaller than what is available in the forecasts!")
} else {
nstep <- prm$accum / fstep
skip_fc <- FALSE
for (i in 1:(nstep - 1)) {
zstep <- get_fc(fcdate, (ldt - i * fstep) / lt_scale)
if (inherits(zstep, "try-error")) {
message(".... Forecast sup-step not found.", immediate = TRUE)
skip_fc <- TRUE
next
}
fcfield <- fcfield + zstep
}
if (skip_fc) {
message("--> Skip forecast.", immediate = TRUE)
next
}
}
}
}
# find forecast vector for basic scores
final_obs <- obsvect_full %>% select(obs,i,j) %>% drop_na()
if (nrow(final_obs) == 0) {
next
}
temp_indices <- final_obs %>% select(i,j)
final_indices <- matrix(unlist(temp_indices), nrow = length(temp_indices), byrow = TRUE)
#############################
### NOW WE COMPUTE SCORES ###
#############################
# FIXME: Some scores (e.g. SAL) have various other parameters that we can't pass yet...
# While others don't need any
for (sf in score_function_list) {
# get the required arguments for this function
# NOTE: args() only works if the function is found
# so either exported, or only internal use
# arglist <- names(as.list(args(sf)))
#print(is.vector(obs_fc_vect$obs))
#print(is.vector(obs_fc_vect$fcst))
#print(is.matrix(indices))
#print(is.matrix(fcfield))
#print(is.vector(thresholds))
#print(is.vector(window_sizes))
#print(is.vector(hira_strategies))
myargs <- list(obsvect=final_obs$obs , indices = final_indices, fcfield=fcfield,
thresholds = thresholds,
scales = window_sizes, strategies = hira_strategies,
execute = TRUE ) # TODO: fill correct stratigies from scores
message("--> Calling ", sf)
multiscore_list <- do.call(sf, myargs)
if (!is.null(multiscore_list)) {
for (sn in score_function_subset[[sf]]) {
multiscore <- as_tibble(multiscore_list[[sn]])
# nrows per case for this score
message("output dim : ", paste(dim(multiscore), collapse="x"))
nrow <- dim(multiscore)[1]
# interval of rows for this case in full score table
intv <- seq_len(nrow) + (case - 1) * nrow
message("-----> Calling score ", sn)
sc <- multiscore[,c(score_list[[sn]]$primary, score_list[[sn]]$fields)]
if (is.null(score_tables[[sn]])) {
template <- hira_score_table(score_list[[sn]])
tbl_struct <- lapply(template$fields,
function(x) switch(x,
"CHARACTER" = NA_character_,
"INTEGER" = NA_integer_,
"REAL" = NA_real_,
NA_real_))
score_tables[[sn]] <- do.call(tibble::tibble, c(tbl_struct, .rows = ncases * nrow))
# we can already fill some constant columns
if ("model" %in% names(score_tables[[sn]])) score_tables[[sn]]$model <- fcst_model
if ("prm" %in% names(score_tables[[sn]])) score_tables[[sn]]$prm <- parameter
}
# which interval of the score table is to be filled (may be only 1 row -> score[case, ...])
# NOTE: save fcdate as unix date, leadtime in seconds !
score_tables[[sn]]$fcdate[intv] <- as.numeric(fcdate)
score_tables[[sn]]$leadtime[intv] <- ldt
score_tables[[sn]][intv, names(sc)] <- sc
}
}
#}
}
case <- case + 1
} # fcdate
} #obdate
if (case < ncases + 1) {
message("There were ", ncases + 1 - case, "missing cases out of ", ncases, ".")
ncases <- case - 1
}
## write to SQLite
if (!is.null(sqlite_file)) {
save_hira_verif(score_tables, sqlite_path, sqlite_file)
}
if (return_data) { invisible(score_tables) }
else { invisible(NULL) }
}
#' Save spatial scores to SQLite
#' @param scores A list of spatial score tables
#' @param sqlite_path The path for the sqlite file
#' @param sqlite_file The file to which the tables are written or added
save_hira_verif <- function(score_tables, sqlite_path, sqlite_file) {
if (is.null(sqlite_path)) db_file <- sqlite_file
else db_file <- paste(sqlite_path, sqlite_file, sep = "/")
message("Writing to SQLite file ", db_file)
db <- harpIO:::dbopen(db_file)
for (sc in names(score_tables)) {
# check for score table and create if necessary
tab <- hira_score_table(hira_scores(score = sc))
# drop empty rows (missing cases)
harpIO:::create_table(db, sc, tab$fields, tab$primary)
# TODO: should we drop all cases were any field is missing?
ok <- !is.na(score_tables[[sc]][, "fcdate"])
sum_ok = sum(ok)
message(sc, ":", dim(score_tables[[sc]])[1], " rows, ", sum_ok, " non-NA.")
if(sum_ok > 0) {
harpIO:::dbwrite(db, sc, score_tables[[sc]][ok, ])
} else {
message("No scores has been written")
}
}
harpIO:::dbclose(db)
}
#####################################
# DEFINITION OF VERIFICATION TABLES #
#####################################
# spatial_tables. Column names may not have a space or full stop.
# anyway, we hardcode per table
# return table description for spatial verification score tables
## @param tab a table name ("basic" or "fuzzy")
# @colnames Character vector giving the names of all the columns needed to describe the score (like c("threshold", "scale"), or c("S", "A", "L")
# not exported
hira_score_table <- function(template) {
# NOTE: if we assume that we have different SQLite files for every parameter
# we don't really need to add the "prm" column.
# BUT: if we ever move to a full SQL database, we might want it anyway.
# NOTE: we decided to switch fcdate back to unix time, so fctime is no longer needed
# NOTE: leadtime should be in seconds. Always. Makes it easy to do date calculations.
standard_fields <- c(
"model" = "CHARACTER",
"prm" = "CHARACTER",
"fcdate" = "REAL",
# "fctime" = "REAL",
"leadtime" = "REAL"
)
# score_fields <- structure(rep("REAL", length(score_names)), names=score_names)
#TODO: Separate integer fields
score_fields <- rep("REAL", length(template$fields))
names(score_fields) <- template$fields
primary_fields <- rep("REAL", length(template$primary))
names(primary_fields) <- template$primary
list(
fields = c(standard_fields, primary_fields, score_fields),
primary = c(names(standard_fields), template$primary)
)
}
# TODO: info table, ...
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.