#' @import ggplot2 cowplot gganimate transformr av viridis
#' @importFrom ellipse ellipse
#' @importFrom mvtnorm dmvt
#' @importFrom scales trans_new
NULL
#' Checking that input to plotting function is compatible
check_compatibility_between_NIW_belief_and_data = function(
x,
data.exposure,
data.test,
facet_rows_by, facet_cols_by, facet_wrap_by, animate_by
) {
facet_rows_by = enquo(facet_rows_by)
facet_cols_by = enquo(facet_cols_by)
facet_wrap_by = enquo(facet_wrap_by)
animate_by = enquo(animate_by)
assert_that(is.NIW_belief(x))
if (!quo_is_null(facet_rows_by)) {
assert_that(quo_is_null(facet_wrap_by), msg = "Can only specify either facet_wrap_by or facet_rows_by/facet_cols_by.")
assert_that(all(as_name(facet_rows_by) %in% names(x)),
msg = paste(as_name(facet_rows_by), "not found in NIW_belief (x)."))
assert_that(!all(!is.null(data.exposure), as_name(facet_rows_by) %nin% names(data.exposure)),
msg = "When facet_rows_by is specified, it must be present in the exposure data.")
}
if (!quo_is_null(facet_cols_by)) {
assert_that(all(as_name(facet_cols_by) %in% names(x)),
msg = paste(as_name(facet_cols_by), "not found in NIW_belief (x)."))
assert_that(!all(!is.null(data.exposure), as_name(facet_cols_by) %nin% names(data.exposure)),
msg = "When facet_cols_by is specified, it must be present in the exposure data.")
}
if (!quo_is_null(facet_wrap_by)) {
assert_that(all(as_name(facet_wrap_by) %in% names(x)),
msg = paste(as_name(facet_wrap_by), "not found in NIW_belief (x)."))
assert_that(!all(!is.null(data.exposure), as_name(facet_wrap_by) %nin% names(data.exposure)),
msg = "When facet_wrap_by is specified, it must be present in the exposure data.")
}
if (!quo_is_null(animate_by)) {
assert_that(all(as_name(animate_by) %in% names(x)),
msg = paste(as_name(animate_by), "not found in NIW_belief (x)."))
assert_that(!all(!is.null(data.exposure), as_name(animate_by) %nin% names(data.exposure)),
msg = "When animate_by is specified, it must be present in the exposure data.")
}
cue.labels = get_cue_labels_from_model(x)
assert_that(!all(!is.null(data.exposure), cue.labels %nin% names(data.exposure)),
msg = "Can't plot exposure data: cue names in exposure data must match those in the NIW belief object.")
assert_that(!all(!is.null(data.exposure), "category" %nin% names(data.exposure)),
msg = "Can't plot exposure data: exposure data does not contain column category.")
assert_that(!all(!is.null(data.test), is.null(data.test)),
msg = "Can't plot test data: No test data provided.")
assert_that(!all(!is.null(data.test), cue.labels %nin% names(data.test)),
msg = "Can't plot test data: cue names in test data must match those in the NIW belief object.")
return(TRUE)
}
#' Plot NIW belief or NIW beliefs object.
#'
#' Plot the parameters of an NIW_belief or NIW_beliefs object.
#'
#' @param x An \code{\link{NIW_belief}} or \code{\link{NIW_beliefs}} object.
#' @param group.colors Vector of fill colors of same length as the number of unique groups in the NIW_belief(s) object, or
#' `NULL` to use defaults. (default: `NULL`)
#' @param facet_rows_by,facet_cols_by,facet_wrap_by,animate_by Which group variables, if any, should be used for faceting and/or
#' animation? (defaults: `NULL`)
#' @param animation_follow Should the animation follow the data (zoom in and out)? (default: `FALSE`)
#'
#' @return ggplot object.
#'
#' @seealso TBD
#' @keywords TBD
#' @export
plot_NIW_belief_parameters = function(
x,
group.colors = NULL,
facet_rows_by = NULL, facet_cols_by = NULL, animate_by = NULL, animation_follow = F
) {
error("This function is not yet implemented.")
# Check out this function from another project:
# plot_VOT_NIW_belief_1D <- function(belief, sigma_max = NULL, prior = NULL) {
# mu_sigma <- belief %>%
# mutate(
# mu = get_expected_mu_from_m(m),
# sigma = get_expected_Sigma_from_S(S, nu))
#
# if (is.null(sigma_max)) sigma_max = max(mu_sigma$sigma) * 2
# if (!is.null(prior))
# prior.mu_sigma <- prior %>%
# mutate(
# mu = get_expected_mu_from_m(m),
# sigma = get_expected_Sigma_from_S(S, nu))
#
# belief %>%
# crossing(
# mu = seq_range(VOT_range, n = VOT_resolution),
# sigma = seq_range(1:sigma_max^.5, n = VOT_resolution)^2) %>%
# { if ("Subject" %in% names(.)) group_by(., Subject) else . } %>%
# # TO DO: Since mu and sigma can probably be vectors this can be made more efficient by first nesting and then unnesting
# # (see what I did for the test_plot function below). The line above this has been in added in anticipation of that
# # change (it's currently not required since the density is obtained line by line).
# mutate(l = unlist(pmap(
# .l = list(mu, m, kappa, sigma, S, nu),
# .f = dnorminvwishart))) %>%
# ggplot(aes(x = mu, y = sigma, color = category, group = category)) +
# { if (is.null(prior))
# list(
# geom_raster(
# data = ~ filter(., category == "/b/"),
# mapping = aes(fill = category, alpha = l),
# interpolate = T),
# geom_raster(
# data = ~ filter(., category == "/p/"),
# mapping = aes(fill = category, alpha = l),
# interpolate = T)) } +
# geom_contour(aes(z = l, color = category), breaks = 10^(-10:-3), size = .5) +
# { if (!is.null(prior))
# geom_contour(
# data = prior %>%
# crossing(
# mu = seq_range(VOT_range, n = VOT_resolution),
# sigma = seq_range(1:sigma_max^.5, n = VOT_resolution)^2) %>%
# mutate(l = unlist(pmap(
# .l = list(mu, m, kappa, sigma, S, nu),
# .f = dnorminvwishart))),
# aes(z = l, color = category), breaks = 10^(-10:-3), size = .5, alpha = .1) } +
# { if (is.null(prior))
# geom_point(
# data = mu_sigma,
# aes(shape = category),
# color = "black") } +
# { if (!is.null(prior))
# list(
# geom_point(
# data = prior.mu_sigma,
# aes(shape = category),
# color = "black",
# alpha = .5),
# geom_segment(
# data =
# mu_sigma %>%
# left_join(
# prior.mu_sigma %>%
# rename_at(vars(mu, sigma), ~ paste0("prior_", .x)),
# by = "category"),
# aes(x = prior_mu, y = prior_sigma, xend = mu, yend = sigma),
# arrow = arrow(angle = 15, length = unit(0.1, "inches"), ends = "last", type = "closed"),
# color = "black",
# size = .5,
# alpha = .75)) } +
# scale_x_continuous(name = bquote(mu ~ "(msec VOT)")) +
# scale_y_sqrt(name = bquote(sigma^2 ~ "(" ~ msec^2 ~ ")"), limits = c(0, sigma_max)) +
# scale_color_discrete("Category") +
# scale_fill_discrete("Category") +
# scale_shape_discrete("Category") +
# { if (is.null(prior)) scale_alpha_continuous("density", range = c(0,1), guide = "none") } +
# coord_cartesian(expand = 0) +
# theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank())
# }
}
#' Plot expected univariate (1D) category likelihoods
#'
#' Plot univariate Gaussian categories expected given NIW belief(s). One NIW belief describes the uncertainty about the
#' category statistics of all categories. This includes the m (the mean of category means \eqn{\mu}), S (the scattermatrix),
#' kappa (the strength of the belief in m) and nu (the strength of the belief in S). For the univariate case, m and S are
#' scalars \insertCite{@see @murphy2012 p. 136}{MVBeliefUpdatr}.
#'
#' It is possible to hand more than one NIW belief to this function, and to facet or animate by variables that uniquely
#' identify the different beliefs. For example, one can plot
#' different priors for different talkers (grouping by talker), or different posteriors for different exposure conditions
#' (grouping by exposure condition), the incremental updating of NIW beliefs (grouping by observations), or any combinations
#' of these.
#'
#' @param x An \code{\link{NIW_belief}} or \code{\link{NIW_beliefs}} object.
#' @param levels Levels of the confidence ellipses. (default: .5, .66, .8, .9., and .95)
#' @param data.exposure Optional \code{tibble} or \code{data.frame} that contains exposure data to be plotted. (default: `NULL`)
#' @param data.test Optional \code{tibble} or \code{data.frame} that contains test data to be plotted. (default: `NULL`)
#' @param facet_rows_by,facet_cols_by,facet_wrap_by,animate_by Which group variables, if any, should be used for faceting and/or
#' animation? (defaults: `NULL`)
#' @param animation_follow Should the animation follow the data (zoom in and out)? (default: `FALSE`)
#' @param xlim,ylim Limits for the x- and y-axis.
#' @param category.ids Vector of category IDs to be plotted or leave `NULL` to plot all groups. (default: `NULL`)
#' @param category.labels Vector of group labels of same length as `category.ids` or `NULL` to use defaults. (default: `NULL`)
#' @param category.colors Vector of colors of same length as category.ids or `NULL` to use defaults. (default: `NULL`)
#' @param category.linetypes Vector of linetypes of same length as category.ids or `NULL` to use defaults. (default: `NULL`)
#' Currently being ignored.
#' @param ... additional arguments to geom_line.
#'
#' @return ggplot object.
#'
#' @seealso TBD
#' @keywords TBD
#' @references \insertRef{murphy2012}{MVBeliefUpdatr}
#' @rdname plot_expected_categories_1D
#' @export
plot_expected_categories_density_1D <- function(
x,
data.exposure = NULL,
data.test = NULL,
facet_rows_by = NULL, facet_cols_by = NULL, facet_wrap_by = NULL, animate_by = NULL, animation_follow = F,
xlim, ylim = NULL, x.expand = c(0, 0),
category.ids = NULL, category.labels = NULL, category.colors = NULL, category.linetypes = NULL,
...
) {
facet_rows_by <- enquo(facet_rows_by)
facet_cols_by <- enquo(facet_cols_by)
facet_wrap_by <- enquo(facet_wrap_by)
animate_by <- enquo(animate_by)
check_compatibility_between_NIW_belief_and_data(x, data.exposure, data.test,
!! facet_rows_by, !! facet_cols_by, !! facet_wrap_by, !! animate_by)
# Remember groups
cue.labels <- get_cue_labels_from_model(x)
assert_that(length(cue.labels) == 1, msg = "Expecting exactly one cue for plotting.")
if (is_missing(xlim)) {
if (!is.null(data.exposure) & !is.null(data.test))
xlim <- range(range(data.exposure[[cue.labels[1]]]), range(data.test[[cue.labels[1]]])) else
if (!is.null(data.exposure))
xlim <- range(data.exposure[[cue.labels[1]]]) else
if (!is.null(data.test))
xlim <- range(data.test[[cue.labels[1]]])
}
assert_that(!is_missing(xlim), msg = "`xlim` must be specified")
# Setting aes defaults
if (is.null(category.ids)) category.ids <- levels(x$category)
if (is.null(category.labels)) category.labels <- levels(x$category)
if (is.null(category.colors)) category.colors <- get_default_colors("category", category.ids)
if (is.null(category.linetypes)) category.linetypes <- rep(1, length(category.ids))
if (any(!quo_is_null(facet_rows_by),
!quo_is_null(facet_cols_by),
!quo_is_null(animate_by))) x %<>% group_by(!! facet_rows_by, !! facet_cols_by, !! facet_wrap_by, !! animate_by,
.add = TRUE)
stat_functions <-
x %>%
mutate(
mu = get_expected_mu_from_m(m),
Sigma = get_expected_Sigma_from_S(S, nu)) %>%
group_by(category, .add = T) %>%
group_map(
.keep = T,
.f = function(.x, .y)
stat_function(
data = .x,
mapping = aes(color = category),
fun = dnorm,
args = list(mean = .x$mu, sd = .x$Sigma^.5),
...))
p <- ggplot(mapping = aes(color = category)) +
stat_functions +
{ if (!is.null(data.test))
add_test_locations_to_1D_plot(data = data.test, cue.labels = cue.labels) } +
{ if (!is.null(data.exposure))
add_exposure_locations_to_1D_plot(data = data.exposure, cue.labels = cue.labels,
category.ids = category.ids, category.labels = category.labels, category.colors) } +
scale_x_continuous(cue.labels, limits = xlim, expand = x.expand) +
scale_y_continuous("Density", limits = ylim) +
scale_color_manual("Category",
breaks = category.ids,
labels = category.labels,
values = category.colors)
p <- facet_or_animate(p, !!facet_rows_by, !!facet_cols_by, !! facet_wrap_by, !!animate_by, animation_follow)
return(p)
}
#' @rdname plot_expected_categories_1D
#' @export
plot_expected_categories_density1D <- plot_expected_categories_density_1D
#' Plot expected categorization function for univariate (1D) categories.
#'
#' Plot categorization function for univariate Gaussian categories expected given NIW parameters.
#'
#' @param target_category The index of the category for which categorization should be shown. (default: `1`)
#' @param xlim,ylim Limits for the x- and y-axis.
#' @param logit Should the categorization function be plotted in logit (`TRUE`) or probabilities (`FALSE`)?
#' (default: `FALSE`)
#' @inheritParams plot_expected_categories_density1D
#'
#' @return ggplot object.
#'
#' @seealso TBD
#' @keywords TBD
#' @rdname plot_expected_categorization_function_1D
#' @export
#'
plot_expected_categorization_function_1D <- function(
x,
data.exposure = NULL,
data.test = NULL,
target_category = 1,
logit = F,
xlim, ylim = NULL, x.expand = c(0, 0),
facet_rows_by = NULL, facet_cols_by = NULL, facet_wrap_by = NULL, animate_by = NULL, animation_follow = F,
category.ids = NULL, category.labels = NULL, category.colors = NULL, category.linetypes = NULL,
...
) {
message("TO DO: implement noise and lapse rate handling. (already implemented in underling functions. just not integrated into plotting).")
facet_rows_by <- enquo(facet_rows_by)
facet_cols_by <- enquo(facet_cols_by)
facet_wrap_by <- enquo(facet_wrap_by)
animate_by <- enquo(animate_by)
check_compatibility_between_NIW_belief_and_data(x, data.exposure, data.test,
!! facet_rows_by, !! facet_cols_by, !! facet_wrap_by, !! animate_by)
cue.labels <- get_cue_labels_from_model(x)
assert_that(length(cue.labels) == 1, msg = "Expecting exactly one cue for plotting.")
if (is_missing(xlim)) {
if (!is.null(data.exposure) & !is.null(data.test))
xlim <- range(range(data.exposure[[cue.labels[1]]]), range(data.test[[cue.labels[1]]])) else
if (!is.null(data.exposure))
xlim <- range(data.exposure[[cue.labels[1]]]) else
if (!is.null(data.test))
xlim <- range(data.test[[cue.labels[1]]])
}
assert_that(!is_missing(xlim), msg = "`xlim` must be specified")
# Setting aes defaults
if (is.null(category.ids)) category.ids <- levels(x$category)
if (is.null(category.labels)) category.labels <- levels(x$category)
if (is.null(category.colors)) category.colors <- get_default_colors("category", category.ids)
if (is.null(category.linetypes)) category.linetypes <- rep(1, length(category.ids))
if (any(!quo_is_null(facet_rows_by),
!quo_is_null(facet_cols_by),
!quo_is_null(animate_by))) x %<>% group_by(!! facet_rows_by, !! facet_cols_by, !! facet_wrap_by, !! animate_by,
.add = TRUE)
stat_functions <-
x %>%
group_map(
.keep = T,
.f = function(.x, .y) {
cat_function <- get_categorization_function_from_NIW_ideal_adaptor(.x)
stat_function(
data = .x,
fun = cat_function,
args = list(target_category = target_category, logit = logit), ...) })
p <-
ggplot() +
stat_functions +
{ if (!is.null(data.test))
add_test_data_to_1D_plot(data = data.test, cue.labels = cue.labels) } +
{ if (!is.null(data.exposure))
add_exposure_data_to_1D_plot(data = data.exposure, cue.labels = cue.labels,
category.ids = category.ids, category.labels = category.labels, category.colors) } +
scale_x_continuous(name = cue.labels, limits = xlim, expand = x.expand) +
scale_y_continuous(name = if (logit)
paste0("log-odds(resp = ", category.labels[target_category], ")") else
paste0("p(resp = ", category.labels[target_category], ")")) +
coord_cartesian(ylim = ylim)
p <- facet_or_animate(p, !!facet_rows_by, !!facet_cols_by, !! facet_wrap_by, !!animate_by, animation_follow)
return(p)
}
#' Plot expected bivariate (2D) category likelihoods
#'
#' Plot bivariate Gaussian categories expected given NIW belief(s). One NIW belief describes the uncertainty about the
#' category statistics of all categories. This includes the m (the mean of category means \eqn{\mu}), S (the scattermatrix),
#' kappa (the strength of the belief in m) and nu (the strength of the belief in S).
#'
#' It is possible to hand more than one NIW belief to this function, and to facet or animate by variables that uniquely
#' identify the different beliefs. For example, one can plot
#' different priors for different talkers (grouping by talker), or different posteriors for different exposure conditions
#' (grouping by exposure condition), the incremental updating of NIW beliefs (grouping by observations), or any combinations
#' of these.
#'
#' @param x An \code{\link{NIW_belief}} or \code{\link{NIW_beliefs}} object.
#' @param levels Levels of the confidence ellipses. (default: .5, .66, .8, .9., and .95)
#' @param data.exposure Optional \code{tibble} or \code{data.frame} that contains exposure data to be plotted. (default: `NULL`)
#' @param data.test Optional \code{tibble} or \code{data.frame} that contains test data to be plotted. (default: `NULL`)
#' @param facet_rows_by,facet_cols_by,facet_wrap_by,animate_by Which group variables, if any, should be used for faceting and/or
#' animation? (defaults: `NULL`)
#' @param animation_follow Should the animation follow the data (zoom in and out)? (default: `FALSE`)
#' @param category.ids Vector of category IDs to be plotted or leave `NULL` to plot all groups. (default: `NULL`). Only relevant
#' if `data.exposure` is provided.
#' @param category.labels Vector of category labels of same length as `category.ids` or `NULL` to use defaults. (default: `NULL`)
#' Only relevant if `data.exposure` is provided.
#' @param category.colors Vector of colors of same length as category.ids or `NULL` to use defaults. (default: `NULL`)
#' Only relevant if `data.exposure` is provided.
#' @param ... additional arguments handed to geom_polygon.
#'
#' @return ggplot object.
#'
#' @seealso TBD
#' @keywords TBD
#' @rdname plot_expected_categories_2D
#' @export
plot_expected_categories_contour_2D <- function(
x,
levels = c(1/2, 2/3, 4/5, 9/10, 19/20),
data.exposure = NULL,
data.test = NULL,
facet_rows_by = NULL, facet_cols_by = NULL, facet_wrap_by = NULL, animate_by = NULL, animation_follow = F,
category.ids = NULL, category.labels = NULL, category.colors = NULL,
...
) {
facet_rows_by = enquo(facet_rows_by)
facet_cols_by = enquo(facet_cols_by)
facet_wrap_by = enquo(facet_wrap_by)
animate_by = enquo(animate_by)
check_compatibility_between_NIW_belief_and_data(x, data.exposure, data.test,
!! facet_rows_by, !! facet_cols_by, !! facet_wrap_by, !! animate_by)
# Remember groups
cue.labels = get_cue_labels_from_model(x)
assert_that(length(cue.labels) == 2, msg = "Expecting exactly two cues for plotting.")
# Setting aes defaults
if (is.null(category.ids)) category.ids = levels(x$category)
if (is.null(category.labels)) category.labels = levels(x$category)
if (is.null(category.colors)) category.colors = get_default_colors("category", category.ids)
suppressMessages(
x %<>%
mutate(Sigma = get_expected_Sigma_from_S(S, nu)) %>%
crossing(level = levels) %>%
mutate(ellipse = pmap(.l = list(Sigma, m, level), ellipse.pmap)) %>%
# This step is necessary since unnest() can't yet unnest lists of matrices
# (bug was reported and added as milestone, 11/2019)
mutate(ellipse = map(ellipse, ~ as_tibble(.x, .name_repair = "unique"))) %>%
select(-c(kappa, nu, m, S, Sigma, lapse_rate)) %>%
unnest(ellipse) %>%
# Get group structure again, as crossing apparently removes it
group_by(!!! syms(group_vars(x)))
)
p = ggplot(x,
aes(
x = .data[[cue.labels[1]]],
y = .data[[cue.labels[2]]],
fill = .data$category)) +
geom_polygon(aes(alpha = 1 - .data$level,
group = interaction(
.data$category,
.data$level,
!!! syms(group_vars(x)))),
...) +
{ if (!is.null(data.test))
add_test_locations_to_2D_plot(data = data.test, cue.labels = cue.labels) } +
{ if (!is.null(data.exposure))
add_exposure_locations_to_2D_plot(data = data.exposure, cue.labels = cue.labels,
category.ids = category.ids, category.labels = category.labels, category.colors) } +
scale_x_continuous(cue.labels[1]) +
scale_y_continuous(cue.labels[2]) +
scale_fill_manual("Category",
breaks = category.ids,
labels = category.labels,
values = category.colors) +
scale_alpha_continuous("Cumulative probability",
range = c(0.05, .5),
breaks = 1 - levels,
labels = round(levels, 2))
p = facet_or_animate(p, !!facet_rows_by, !!facet_cols_by, !! facet_wrap_by, !!animate_by, animation_follow)
return(p)
}
#' @rdname plot_expected_categories_2D
#' @export
plot_expected_categories_contour2D <- plot_expected_categories_contour_2D
#' Plot expected categorization function for bivariate (2D) categories.
#'
#' Plot categorization function for bivariate Gaussian categories expected given NIW parameters.
#'
#' @param target_category The index of the category for which categorization should be shown. (default: `1`)
#' @param xlim,ylim Limits for the x- and y-axis.
#' @param resolution How many steps along x and y should be calculated? Note that computational
#' complexity increases quadratically with resolution. (default: 25)
#' @param logit Should the categorization function be plotted in logit (`TRUE`) or probabilities (`FALSE`)?
#' (default: `FALSE`)
#' @inheritParams plot_expected_categories_contour2D
#'
#' @return ggplot object.
#'
#' @seealso TBD
#' @keywords TBD
#' @rdname plot_expected_categorization_function_2D
#' @export
#'
plot_expected_categorization_function_2D <- function(
x,
data.exposure = NULL,
data.test = NULL,
target_category = 1,
logit = F,
xlim, ylim, resolution = 25,
facet_rows_by = NULL, facet_cols_by = NULL, facet_wrap_by = NULL, animate_by = NULL, animation_follow = F,
category.ids = NULL, category.labels = NULL, category.colors = NULL,
...
) {
message("TO DO: implement noise and lapse rate handling. (already implemented in underling functions. just not integrated into plotting).")
facet_rows_by <- enquo(facet_rows_by)
facet_cols_by <- enquo(facet_cols_by)
facet_wrap_by <- enquo(facet_wrap_by)
animate_by <- enquo(animate_by)
check_compatibility_between_NIW_belief_and_data(x, data.exposure, data.test,
!! facet_rows_by, !! facet_cols_by, !! facet_wrap_by, !! animate_by)
cue.labels <- get_cue_labels_from_model(x)
assert_that(length(cue.labels) == 2, msg = "Expecting exactly two cues for plotting.")
if (is_missing(xlim)) {
if (!is.null(data.exposure) & !is.null(data.test))
xlim <- range(range(data.exposure[[cue.labels[1]]]), range(data.test[[cue.labels[1]]])) else
if (!is.null(data.exposure))
xlim <- range(data.exposure[[cue.labels[1]]]) else
if (!is.null(data.test))
xlim <- range(data.test[[cue.labels[1]]])
}
if (is_missing(ylim)) {
if (!is.null(data.exposure) & !is.null(data.test))
ylim <- range(range(data.exposure[[cue.labels[2]]]), range(data.test[[cue.labels[2]]])) else
if (!is.null(data.exposure))
ylim <- range(data.exposure[[cue.labels[2]]]) else
if (!is.null(data.test))
ylim <- range(data.test[[cue.labels[2]]])
}
assert_that(!is_missing(xlim), msg = "`xlim` must be specified")
assert_that(!is_missing(ylim), msg = "`ylim` must be specified")
# Setting aes defaults
if (is.null(category.ids)) category.ids <- levels(x$category)
if (is.null(category.labels)) category.labels <- levels(x$category)
if (is.null(category.colors)) category.colors <- get_default_colors("category", category.ids)
if (any(!quo_is_null(facet_rows_by),
!quo_is_null(facet_cols_by),
!quo_is_null(animate_by))) x %<>% group_by(!! facet_rows_by, !! facet_cols_by, !! animate_by,
.add = TRUE)
d <- crossing(
!! sym(cue.labels[1]) := seq(min(xlim), max(xlim), length.out = resolution),
!! sym(cue.labels[2]) := seq(min(ylim), max(ylim), length.out = resolution))
x %<>%
nest() %>%
mutate(f = map(data, get_categorization_function_from_NIW_ideal_adaptor)) %>%
# Join in vectored cues
cross_join(
d %>%
transmute(x = pmap(.l = list(!!! syms(cue.labels)), .f = ~ c(...))) %>%
nest(cues = everything())) %>%
mutate(
p_cat = invoke_map(.f = f, .x = cues, target_category = target_category, logit = logit),
cues = NULL,
f = NULL) %>%
# Join separate cues back in
cross_join(d %>% nest(cues = everything())) %>%
unnest(c(cues, p_cat))
p <- ggplot(x,
mapping = aes(
x = .data[[cue.labels[1]]],
y = .data[[cue.labels[2]]])) +
geom_raster(mapping = aes(fill = if (logit) qlogis(.data$p_cat) else .data$p_cat), ...) +
# geom_contour(
# mapping = aes(z = if (logit) qlogis(.data$p_cat) else .data$p_cat)) +
{ if (!is.null(data.test))
add_test_locations_to_2D_plot(data = data.test, cue.labels = cue.labels) } +
{ if (!is.null(data.exposure))
add_exposure_locations_to_2D_plot(data = data.exposure, cue.labels = cue.labels,
category.ids = category.ids, category.labels = category.labels, category.colors) } +
scale_x_continuous(cue.labels[1]) +
scale_y_continuous(cue.labels[2]) +
# For now think about two colors and categories
scale_fill_gradient2(paste0("p(resp = ", category.labels[target_category], ")"),
low = category.colors[1],
mid = "white",
high = category.colors[2],
midpoint = if (logit) 0 else .5) +
coord_cartesian(xlim = xlim, ylim = ylim)
p <- facet_or_animate(p, !!facet_rows_by, !!facet_cols_by, !! facet_wrap_by, !!animate_by, animation_follow)
return(p)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.