#' Mirror plot comparing two probtrans objects
#'
#' A mirror plot for comparing two different \code{"probtrans"} objects. Useful
#' for comparing predicted probabilities for different levels of a covariate,
#' or for different subgroups at some prediction time horizon.
#'
#' @param x A list of two \code{"probtrans"} objects.
#' The first element will be on the left of the mirror plot,
#' and the second on the right
#' @param titles A character vector c("Title for left", "Title for right")
#' @param size_titles Numeric, size of the title text
#' @param breaks_x_left Numeric vector specifying axis breaks on the left plot
#' @param breaks_x_right Numeric vector specifying axis breaks on the right plot
#' @param xlab A title for the x-axis, default is "Time"
#' @param ylab A title for the y-axis, default is "Probability"
#' @param legend.pos Position of the legend, default is "right"
#' @param horizon Numeric, position denoting (in time) where to symmetrically
#' mirror the plots. Default is maximum follow-up of from both plots.
#'
#' @inheritParams plot.probtrans
#'
#' @seealso \code{\link{plot.probtrans}}
#'
#' @return A ggplot2 object.
#'
#' @author Edouard F. Bonneville \email{e.f.bonneville@@lumc.nl}
#'
#' @examples
#'
#' library(ggplot2)
#'
#' data("aidssi")
#' head(aidssi)
#' si <- aidssi
#'
#' # Prepare transition matrix
#' tmat <- trans.comprisk(2, names = c("event-free", "AIDS", "SI"))
#'
#' # Run msprep
#' si$stat1 <- as.numeric(si$status == 1)
#' si$stat2 <- as.numeric(si$status == 2)
#'
#' silong <- msprep(
#' time = c(NA, "time", "time"),
#' status = c(NA, "stat1", "stat2"),
#' data = si, keep = "ccr5", trans = tmat
#' )
#'
#' # Run cox model
#' silong <- expand.covs(silong, "ccr5")
#' c1 <- coxph(Surv(time, status) ~ ccr5WM.1 + ccr5WM.2 + strata(trans),
#' data = silong)
#'
#' # 1. Prepare reference patient data - both CCR5 genotypes
#' WW <- data.frame(
#' ccr5WM.1 = c(0, 0),
#' ccr5WM.2 = c(0, 0),
#' trans = c(1, 2),
#' strata = c(1, 2)
#' )
#'
#' WM <- data.frame(
#' ccr5WM.1 = c(1, 0),
#' ccr5WM.2 = c(0, 1),
#' trans = c(1, 2),
#' strata = c(1, 2)
#' )
#'
#' # 2. Make msfit objects
#' msf.WW <- msfit(c1, WW, trans = tmat)
#' msf.WM <- msfit(c1, WM, trans = tmat)
#'
#' # 3. Make probtrans objects
#' pt.WW <- probtrans(msf.WW, predt = 0)
#' pt.WM <- probtrans(msf.WM, predt = 0)
#'
#' # Mirror plot split at 10 years - see vignette for more details
#' vis.mirror.pt(
#' x = list(pt.WW, pt.WM),
#' titles = c("WW", "WM"),
#' horizon = 10
#' )
#'
#' @export
vis.mirror.pt <- function(x,
titles,
size_titles = 5,
horizon = NULL,
breaks_x_left,
breaks_x_right,
from = 1,
cols,
ord,
xlab = "Time",
ylab = "Probability",
legend.pos = "right") {
# Check for ggplot2
if (!requireNamespace("ggplot2", quietly = TRUE)) {
stop("Package ggplot2 needed for this function to work. Please install it.", call. = FALSE)
}
# Check the number of states
tmat <- x[[1]][["trans"]]
state_names <- dimnames(tmat)[[1]]
n_states_plotted <- 1 + sum(!is.na(tmat[seq(from, nrow(tmat), by = 1), ]))
if (missing(cols)) cols <- set_colours(n_states_plotted, type = "areas")
if (missing(ord)) ord <- seq_along(state_names)
# First build plot and inherit colours from left
p_left <- plot.probtrans(x[[1]], use.ggplot = TRUE, ord = ord, cols = cols, from = from)
p_right <- plot.probtrans(x[[2]], use.ggplot = TRUE, ord = ord, cols = cols, from = from)
build_p1 <- ggplot2::ggplot_build(p_left)
# Inherit also xlims for symmetry - edit here for xlim.
left_xlim <- p_left$coordinates$limits$x
right_xlim <- p_right$coordinates$limits$x
# Horizon for symmetry
if (!is.null(horizon)) {
if (horizon > max(left_xlim) | horizon > max(right_xlim))
stop(paste0("Horizon should be smaller than both ", max(left_xlim), " and ", max(right_xlim)))
left_xlim[which(left_xlim == max(left_xlim))] <- horizon
right_xlim[which(right_xlim == max(right_xlim))] <- horizon
}
# In limits from plots
dat_left <- p_left$data[time <= max(left_xlim)]
dat_left[time == max(dat_left$time), ]$time <- max(left_xlim)
dat_right <- p_right$data[time <= max(right_xlim)]
dat_right[time == max(dat_right$time), ]$time <- max(right_xlim)
# Check if same ord was used for both plots
if (any(levels(dat_left$state) != levels(dat_right$state)))
stop("Argument 'ord' must be the same for both plots.")
# Get maximum time and set x axis
ylim <- c(0, 1)
# Prep df, right side needs to lagged
main <- prep_compare_df(
dat_left = dat_left,
dat_right = dat_right
)
# Read-in objs
dat_main <- main$df_compare
max_t <- main$max_t
diff <- main$diff
# Prep labels
breaks_size <- c(floor(max_t / 3), floor(max(dat_right$time) / 3))
if (any(breaks_size == 0)) breaks_size <- c(round(max_t / 3, digits = 1), round(max(dat_right$time) / 3, digits = 1))
if (missing(breaks_x_left)) breaks_x_left <- seq(from = 0, to = max_t, by = breaks_size[1])
if (missing(breaks_x_right)) breaks_x_right <- seq(from = 0, to = max(dat_right$time), by = breaks_size[2])
# If not missing check labels are within bounds
if (any(breaks_x_left > max_t))
stop(paste0("Max follow up on left side is ", round(max_t, 3), ", make sure all breaks are smaller!"))
if (any(breaks_x_right > max(dat_right$time)))
stop(paste0("Max follow up on right side is ", round(max(dat_right$time), 3), ", make sure all breaks are smaller!"))
breakos <- c(breaks_x_left, max(dat_main$time) - breaks_x_right)
labos <- c(breaks_x_left, breaks_x_right)
# Build basic plot
p_main <- ggplot2::ggplot(data = dat_main, ggplot2::aes(x = .data$time)) +
ggplot2::geom_ribbon(
ggplot2::aes(ymin = .data$low, ymax = .data$upp, fill = .data$state),
col = "black",
na.rm = TRUE
) +
# Add divider segment
ggplot2::geom_segment(
x = max_t,
xend = max_t,
y = ylim[1],
yend = ylim[2],
size = 2
) +
ggplot2::scale_x_continuous(xlab, breaks = breakos, labels = labos) +
ggplot2::ylab(ylab) +
ggplot2::scale_fill_manual(values = cols) +
ggplot2::guides(fill = ggplot2::guide_legend(reverse = TRUE))
if (missing(titles)) {
p <- p_main +
ggplot2::theme(
legend.position = legend.pos,
panel.grid = ggplot2::element_blank(),
panel.background = ggplot2::element_blank(),
axis.line = ggplot2::element_blank()
) +
ggplot2::coord_cartesian(expand = 0, ylim = ylim)
return(p)
} else {
# Position of titles - divide by max time for grob
pos_title_left <- (max_t / 2)
pos_title_right <- (max(dat_main$time) - max(dat_right$time) / 2)
titles_df <- data.frame(
labs = c(titles[1], titles[2]),
pos_x = c(pos_title_left, pos_title_right),
pos_y = rep(1.05, 2)
)
base_p <- p_main +
ggplot2::theme(
plot.margin = ggplot2::unit(c(30.5, 5.5, 5.5, 5.5), "points"),
legend.position = legend.pos,
panel.grid = ggplot2::element_blank()
) +
ggplot2::coord_cartesian(clip = "off", expand = 0, ylim = ylim) +
ggplot2::geom_text(
data = titles_df,
ggplot2::aes(x = .data$pos_x, y = .data$pos_y, label = .data$labs),
hjust = 0.5,
size = size_titles
)
return(base_p)
}
}
prep_compare_df <- function(dat_left, dat_right) {
# For data.table
. <- time <- time_orig <- state <- side <- NULL
# Get maximum times
p1_maxt <- max(dat_left$time)
p2_maxt <- max(dat_right$time)
# Set max_t to left one in any case
max_t <- p1_maxt
# Check shift
diff <- ifelse(p2_maxt != p1_maxt, p2_maxt - p1_maxt, 0)
# Get righthand side back to original df
df_p2 <- data.table::copy(dat_right)
df_p2[, time := data.table::shift(
x = time,
fill = NA,
n = 1,
type = "lag"
), by = state]
df_p2 <- unique(df_p2[!is.na(time)])
# Rescale time
df_p2[, ':=' (
time_orig = time,
time = -time + 2 * max_t + (diff + 0.01)
)]
# Shift all
cols <- c("time", "time_orig")
df_p2 <- rbind(df_p2, df_p2)
data.table::setorder(df_p2, time)
df_p2[, (cols) := Map(
f = data.table::shift,
x = .SD,
fill = time[1L],
n = 1,
type = "lag"
), by = state, .SDcols = cols]
df_p2[, side := "right"]
# Left sides
df_p1 <- dat_left[, ':=' (
time_orig = time,
side = "left"
)]
# Bind both sides
plot_df <- rbind(df_p1, df_p2[!is.na(time)])
# Return a list of useful things
res <- list("df_compare" = plot_df, "max_t" = max_t, "diff" = diff)
return(res)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.