fsi_old <- function(db,
grpBy = NULL,
polys = NULL,
returnSpatial = FALSE,
bySpecies = FALSE,
bySizeClass = FALSE,
landType = 'forest',
treeType = 'live',
method = 'sma',
lambda = .5,
treeDomain = NULL,
areaDomain = NULL,
totals = TRUE,
byPlot = FALSE,
scaleGCB = TRUE,
useLM = FALSE,
nCores = 1) {
## Need a plotCN
db$TREE <- db[['TREE']] %>% mutate(TRE_CN = CN)
## Need a plotCN, and a new ID
db$PLOT <- db$PLOT %>% mutate(PLT_CN = CN,
pltID = paste(UNITCD, STATECD, COUNTYCD, PLOT, sep = '_'))
## don't have to change original code
grpBy_quo <- enquo(grpBy)
# Probably cheating, but it works
if (quo_name(grpBy_quo) != 'NULL'){
## Have to join tables to run select with this object type
plt_quo <- filter(db$PLOT, !is.na(PLT_CN))
## We want a unique error message here to tell us when columns are not present in data
d_quo <- tryCatch(
error = function(cnd) {
return(0)
},
plt_quo[10,] %>% # Just the first row
left_join(select(db$COND, PLT_CN, names(db$COND)[names(db$COND) %in% names(db$PLOT) == FALSE]), by = 'PLT_CN') %>%
inner_join(select(db$TREE, PLT_CN, names(db$TREE)[names(db$TREE) %in% c(names(db$PLOT), names(db$COND)) == FALSE]), by = 'PLT_CN') %>%
select(!!grpBy_quo)
)
# If column doesnt exist, just returns 0, not a dataframe
if (is.null(nrow(d_quo))){
grpName <- quo_name(grpBy_quo)
stop(paste('Columns', grpName, 'not found in PLOT, TREE, or COND tables. Did you accidentally quote the variables names? e.g. use grpBy = ECOSUBCD (correct) instead of grpBy = "ECOSUBCD". ', collapse = ', '))
} else {
# Convert to character
grpBy <- names(d_quo)
}
}
reqTables <- c('PLOT', 'TREE', 'TREE_GRM_COMPONENT', 'COND',
'POP_PLOT_STRATUM_ASSGN', 'POP_ESTN_UNIT', 'POP_EVAL',
'POP_STRATUM', 'POP_EVAL_TYP', 'POP_EVAL_GRP')
## Some warnings
if (class(db) != "FIA.Database"){
stop('db must be of class "FIA.Database". Use readFIA() to load your FIA data.')
}
if (!is.null(polys) & first(class(polys)) %in% c('sf', 'SpatialPolygons', 'SpatialPolygonsDataFrame') == FALSE){
stop('polys must be spatial polygons object of class sp or sf. ')
}
if (landType %in% c('timber', 'forest') == FALSE){
stop('landType must be one of: "forest" or "timber".')
}
if (any(reqTables %in% names(db) == FALSE)){
missT <- reqTables[reqTables %in% names(db) == FALSE]
stop(paste('Tables', paste (as.character(missT), collapse = ', '), 'not found in object db.'))
}
if (str_to_upper(method) %in% c('TI', 'SMA', 'LMA', 'EMA', 'ANNUAL') == FALSE) {
warning(paste('Method', method, 'unknown. Defaulting to Temporally Indifferent (TI).'))
}
# ## No EXP_GROW available for Western States, make sure we warn that values will be returned as 0
# # These states do not allow temporal queries. Things are extremely weird with their eval groups
# noGrow <- c(02,03,04,07,08,11,14,15,16, 23, 30, 32, 35,43,49, 78)
# if(any(unique(db$PLOT$STATECD) %in% noGrow)){
# vState <- unique(db$PLOT$STATECD[db$PLOT$STATECD %in% noGrow])
# fancyName <- unique(intData$EVAL_GRP$STATE[intData$EVAL_GRP$STATECD %in% vState])
# warning(paste('Recruitment data unavailable for: ', toString(fancyName) , '. Returning 0 for all recruitment estimates which include these states.', sep = ''))
# }
# # These states do not allow change estimates.
# if(any(unique(db$PLOT$STATECD) %in% c(69, 72, 78, 15, 02))){
# vState <- unique(db$PLOT$STATECD[db$PLOT$STATECD %in% c(69, 72, 78, 15, 02)])
# fancyName <- unique(intData$EVAL_GRP$STATE[intData$EVAL_GRP$STATECD %in% vState])
# stop(paste('Growth & Mortality Estimates unavailable for: ', paste(as.character(fancyName), collapse = ', '), sep = ''))
# }
### DEAL WITH TEXAS
if (any(db$POP_EVAL$STATECD %in% 48)){
## Will require manual updates, fix your shit texas
txIDS <- db$POP_EVAL %>%
filter(STATECD %in% 48) %>%
filter(END_INVYR < 2017) %>%
filter(END_INVYR > 2006) %>%
## Removing any inventory that references east or west, sorry
filter(str_detect(str_to_upper(EVAL_DESCR), 'EAST', negate = TRUE) &
str_detect(str_to_upper(EVAL_DESCR), 'WEST', negate = TRUE))
db$POP_EVAL <- bind_rows(filter(db$POP_EVAL, !(STATECD %in% 48)), txIDS)
}
# I like a unique ID for a plot through time
if (byPlot) {grpBy <- c('pltID', 'PLOT_STATUS_CD', grpBy)}
# Save original grpBy for pretty return with spatial objects
grpByOrig <- grpBy
### AREAL SUMMARY PREP
if(!is.null(polys)) {
# Convert polygons to an sf object
polys <- polys %>%
as('sf')%>%
mutate_if(is.factor,
as.character)
## A unique ID
polys$polyID <- 1:nrow(polys)
# Add shapefile names to grpBy
#grpBy = c(names(polys)[str_detect(names(polys), 'geometry') == FALSE], 'polyID', grpBy)
grpBy = c(grpBy, 'polyID')
## Make plot data spatial, projected same as polygon layer
pltSF <- select(db$PLOT, c('LON', 'LAT', pltID)) %>%
filter(!is.na(LAT) & !is.na(LON)) %>%
distinct(pltID, .keep_all = TRUE)
coordinates(pltSF) <- ~LON+LAT
proj4string(pltSF) <- '+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs'
pltSF <- as(pltSF, 'sf') %>%
st_transform(crs = st_crs(polys)$proj4string)
## Split up polys
polyList <- split(polys, as.factor(polys$polyID))
suppressWarnings({suppressMessages({
## Compute estimates in parallel -- Clusters in windows, forking otherwise
if (Sys.info()['sysname'] == 'Windows'){
cl <- makeCluster(nCores)
clusterEvalQ(cl, {
library(dplyr)
library(stringr)
library(rFIA)
})
out <- parLapply(cl, X = names(polyList), fun = areal_par, pltSF, polyList)
#stopCluster(cl) # Keep the cluster active for the next run
} else { # Unix systems
out <- mclapply(names(polyList), FUN = areal_par, pltSF, polyList, mc.cores = nCores)
}
})})
pltSF <- bind_rows(out)
# A warning
if (length(unique(pltSF$pltID)) < 1){
stop('No plots in db overlap with polys.')
}
## Add polygon names to PLOT
db$PLOT <- db$PLOT %>%
left_join(pltSF, by = 'pltID')
# Test if any polygons cross state boundaries w/ different recent inventory years (continued w/in loop)
if ('mostRecent' %in% names(db) & length(unique(db$POP_EVAL$STATECD)) > 1){
mergeYears <- pltSF %>%
right_join(select(db$PLOT, PLT_CN, pltID), by = 'pltID') %>%
inner_join(select(db$POP_PLOT_STRATUM_ASSGN, c('PLT_CN', 'EVALID', 'STATECD')), by = 'PLT_CN') %>%
inner_join(select(db$POP_EVAL, c('EVALID', 'END_INVYR')), by = 'EVALID') %>%
group_by(polyID) %>%
summarize(maxYear = max(END_INVYR, na.rm = TRUE))
}
## TO RETURN SPATIAL PLOTS
}
if (byPlot & returnSpatial){
grpBy <- c(grpBy, 'LON', 'LAT')
} # END AREAL
## Build domain indicator function which is 1 if observation meets criteria, and 0 otherwise
# Land type domain indicator
if (tolower(landType) == 'forest'){
db$COND$landD <- ifelse(db$COND$COND_STATUS_CD == 1, 1, 0)
# Tree Type domain indicator
if (tolower(treeType) == 'live'){
db$TREE$typeD <- ifelse(db$TREE$STATUSCD == 1, 1, 0)
} else if (tolower(treeType) == 'gs'){
db$TREE$typeD <- ifelse(db$TREE$DIA >= 5 & db$TREE$STATUSCD == 1, 1, 0)
}
} else if (tolower(landType) == 'timber'){
db$COND$landD <- ifelse(db$COND$COND_STATUS_CD == 1 & db$COND$SITECLCD %in% c(1, 2, 3, 4, 5, 6) & db$COND$RESERVCD == 0, 1, 0)
# Tree Type domain indicator
if (tolower(treeType) == 'live'){
db$TREE$typeD <- ifelse(db$TREE$STATUSCD == 1, 1, 0)
} else if (tolower(treeType) == 'gs'){
db$TREE$typeD <- ifelse(db$TREE$DIA >= 5 & db$TREE$STATUSCD == 1, 1, 0)
}
}
# update spatial domain indicator
if(!is.null(polys)){
db$PLOT$sp <- ifelse(db$PLOT$pltID %in% pltSF$pltID, 1, 0)
} else {
db$PLOT$sp <- 1
}
# User defined domain indicator for area (ex. specific forest type)
pcEval <- left_join(db$PLOT, select(db$COND, -c('STATECD', 'UNITCD', 'COUNTYCD', 'INVYR', 'PLOT')), by = 'PLT_CN')
areaDomain <- substitute(areaDomain)
pcEval$aD <- eval(areaDomain, pcEval) ## LOGICAL, THIS IS THE DOMAIN INDICATOR
if(!is.null(pcEval$aD)) pcEval$aD[is.na(pcEval$aD)] <- 0 # Make NAs 0s. Causes bugs otherwise
if(is.null(pcEval$aD)) pcEval$aD <- 1 # IF NULL IS GIVEN, THEN ALL VALUES TRUE
pcEval$aD <- as.numeric(pcEval$aD)
db$COND <- left_join(db$COND, select(pcEval, c('PLT_CN', 'CONDID', 'aD')), by = c('PLT_CN', 'CONDID')) %>%
mutate(aD_c = aD)
aD_p <- pcEval %>%
group_by(PLT_CN) %>%
summarize(aD_p = as.numeric(any(aD > 0)))
db$PLOT <- left_join(db$PLOT, aD_p, by = 'PLT_CN')
rm(pcEval)
# Same as above for tree (ex. trees > 20 ft tall)
treeDomain <- substitute(treeDomain)
tD <- eval(treeDomain, db$TREE) ## LOGICAL, THIS IS THE DOMAIN INDICATOR
if(!is.null(tD)) tD[is.na(tD)] <- 0 # Make NAs 0s. Causes bugs otherwise
if(is.null(tD)) tD <- 1 # IF NULL IS GIVEN, THEN ALL VALUES TRUE
db$TREE$tD <- as.numeric(tD)
### Snag the EVALIDs that are needed
db$POP_EVAL <- db$POP_EVAL %>%
#left_join(ga, by = 'END_INVYR') %>%
select('CN', 'END_INVYR', 'EVALID', 'ESTN_METHOD', 'GROWTH_ACCT') %>%
left_join(select(db$POP_EVAL_TYP, c('EVAL_CN', 'EVAL_TYP')), by = c('CN' = 'EVAL_CN')) %>%
filter(EVAL_TYP %in% c('EXPVOL')) %>%
filter(!is.na(END_INVYR) & !is.na(EVALID) & END_INVYR >= 2003) %>%
distinct(END_INVYR, EVALID, .keep_all = TRUE)# %>%
#group_by(END_INVYR) %>%
#summarise(id = list(EVALID)
## Make an annual panel ID, associated with an INVYR
### The population tables
pops <- select(db$POP_EVAL, c('EVALID', 'ESTN_METHOD', 'CN', 'GROWTH_ACCT', 'END_INVYR', 'EVAL_TYP')) %>%
rename(EVAL_CN = CN) %>%
left_join(select(db$POP_ESTN_UNIT, c('CN', 'EVAL_CN', 'AREA_USED', 'P1PNTCNT_EU')), by = c('EVAL_CN')) %>%
rename(ESTN_UNIT_CN = CN) %>%
left_join(select(db$POP_STRATUM, c('ESTN_UNIT_CN', 'EXPNS', 'P2POINTCNT', 'CN', 'P1POINTCNT', 'ADJ_FACTOR_SUBP', 'ADJ_FACTOR_MICR', "ADJ_FACTOR_MACR")), by = c('ESTN_UNIT_CN')) %>%
rename(STRATUM_CN = CN) %>%
left_join(select(db$POP_PLOT_STRATUM_ASSGN, c('STRATUM_CN', 'PLT_CN', 'INVYR', 'STATECD')), by = 'STRATUM_CN') %>%
## Join on REMPER PLOTS
left_join(select(db$PLOT, PLT_CN, REMPER, PREV_PLT_CN, DESIGNCD, PLOT_STATUS_CD), by = 'PLT_CN') %>%
filter(!is.na(REMPER) & !is.na(PREV_PLT_CN) & DESIGNCD == 1 & PLOT_STATUS_CD != 3) %>%
mutate_if(is.factor,
as.character)
### Which estimator to use?
if (str_to_upper(method) %in% c('ANNUAL')){
## Want to use the year where plots are measured, no repeats
## Breaking this up into pre and post reporting becuase
## Estimation units get weird on us otherwise
popOrig <- pops
pops <- pops %>%
group_by(STATECD) %>%
filter(END_INVYR == INVYR) %>%
ungroup()
prePops <- popOrig %>%
group_by(STATECD) %>%
filter(INVYR < min(END_INVYR, na.rm = TRUE)) %>%
distinct(PLT_CN, .keep_all = TRUE) %>%
ungroup()
pops <- bind_rows(pops, prePops) %>%
mutate(YEAR = INVYR)
} else { # Otherwise temporally indifferent
pops <- rename(pops, YEAR = END_INVYR)
}
## P2POINTCNT column is NOT consistent for annnual estimates, plots
## within individual strata and est units are related to different INVYRs
p2_INVYR <- pops %>%
group_by(ESTN_UNIT_CN, STRATUM_CN, INVYR) %>%
summarize(P2POINTCNT_INVYR = length(unique(PLT_CN)))
## Want a count of p2 points / eu, gets screwed up with grouping below
p2eu_INVYR <- p2_INVYR %>%
distinct(ESTN_UNIT_CN, STRATUM_CN, INVYR, .keep_all = TRUE) %>%
group_by(ESTN_UNIT_CN, INVYR) %>%
summarize(p2eu_INVYR = sum(P2POINTCNT_INVYR, na.rm = TRUE))
p2eu <- pops %>%
distinct(ESTN_UNIT_CN, STRATUM_CN, .keep_all = TRUE) %>%
group_by(ESTN_UNIT_CN) %>%
summarize(p2eu = sum(P2POINTCNT, na.rm = TRUE))
## Rejoin
pops <- pops %>%
left_join(p2_INVYR, by = c('ESTN_UNIT_CN', 'STRATUM_CN', 'INVYR')) %>%
left_join(p2eu_INVYR, by = c('ESTN_UNIT_CN', 'INVYR')) %>%
left_join(p2eu, by = 'ESTN_UNIT_CN')
## Recode a few of the estimation methods to make things easier below
pops$ESTN_METHOD = recode(.x = pops$ESTN_METHOD,
`Post-Stratification` = 'strat',
`Stratified random sampling` = 'strat',
`Double sampling for stratification` = 'double',
`Simple random sampling` = 'simple',
`Subsampling units of unequal size` = 'simple')
## Add species to groups
if (bySpecies) {
db$TREE <- db$TREE %>%
left_join(select(intData$REF_SPECIES_2018, c('SPCD','COMMON_NAME', 'GENUS', 'SPECIES')), by = 'SPCD') %>%
mutate(SCIENTIFIC_NAME = paste(GENUS, SPECIES, sep = ' ')) %>%
mutate_if(is.factor,
as.character)
grpBy <- c(grpBy, 'SPCD', 'COMMON_NAME', 'SCIENTIFIC_NAME')
grpByOrig <- c(grpByOrig, 'SPCD', 'COMMON_NAME', 'SCIENTIFIC_NAME')
}
## Break into size classes
if (bySizeClass){
grpBy <- c(grpBy, 'sizeClass')
grpByOrig <- c(grpByOrig, 'sizeClass')
db$TREE$sizeClass <- makeClasses(db$TREE$DIA, interval = 2, numLabs = TRUE)
db$TREE <- db$TREE[!is.na(db$TREE$sizeClass),]
}
#db$TREE$htClass <- makeClasses(db$TREE$HT, interval = 5)
# # Seperate area grouping names, (ex. TPA red oak in total land area of ingham county, rather than only area where red oak occurs)
# if (!is.null(polys)){
# aGrpBy <- c(grpBy[grpBy %in% names(db$PLOT) | grpBy %in% names(db$COND) | grpBy %in% names(pltSF)])
# } else {
# aGrpBy <- c(grpBy[grpBy %in% names(db$PLOT) | grpBy %in% names(db$COND)])
# }
## Only the necessary plots for EVAL of interest
db$PLOT <- filter(db$PLOT, PLT_CN %in% pops$PLT_CN | PLT_CN %in% pops$PREV_PLT_CN)
## Reduce the memory load for others
db <- clipFIA(db, mostRecent = FALSE)
#### Need to scale our variables globally
db$TREE <- db$TREE %>%
mutate(BAA = basalArea(DIA) * TPA_UNADJ)
# ## Scaling factors
# tpaMean <- mean(db$TREE$TPA_UNADJ, na.rm = TRUE)
# tpaSD <- sd(db$TREE$TPA_UNADJ, na.rm = TRUE)
# baaMean <- mean(db$TREE$BAA, na.rm = TRUE)
# baaSD <- sd(db$TREE$BAA, na.rm = TRUE)
# ## Apply them
# db$TREE <- db$TREE %>%
# mutate(TPA_UNADJ = scale(TPA_UNADJ),
# BAA = scale(BAA))
## Merging state and county codes
plts <- split(db$PLOT, as.factor(paste(db$PLOT$COUNTYCD, db$PLOT$STATECD, sep = '_')))
## Use the linear model procedures or strictly t2-t1 / remper?
if (useLM){
suppressWarnings({
## Compute estimates in parallel -- Clusters in windows, forking otherwise
if (Sys.info()['sysname'] == 'Windows'){
cl <- makeCluster(nCores)
clusterEvalQ(cl, {
library(dplyr)
library(stringr)
library(rFIA)
library(tidyr)
library(purrr)
})
out <- parLapply(cl, X = names(plts), fun = fsiHelper1_lm, plts, db, grpBy, byPlot)
#stopCluster(cl) # Keep the cluster active for the next run
} else { # Unix systems
out <- mclapply(names(plts), FUN = fsiHelper1_lm, plts, db, grpBy, byPlot, mc.cores = nCores)
}
})
} else {
suppressWarnings({
## Compute estimates in parallel -- Clusters in windows, forking otherwise
if (Sys.info()['sysname'] == 'Windows'){
cl <- makeCluster(nCores)
clusterEvalQ(cl, {
library(dplyr)
library(stringr)
library(rFIA)
library(tidyr)
})
out <- parLapply(cl, X = names(plts), fun = fsiHelper1, plts, db, grpBy, byPlot)
#stopCluster(cl) # Keep the cluster active for the next run
} else { # Unix systems
out <- mclapply(names(plts), FUN = fsiHelper1, plts, db, grpBy, byPlot, mc.cores = nCores)
}
})
}
if (byPlot){
## back to dataframes
out <- unlist(out, recursive = FALSE)
tOut <- bind_rows(out[names(out) == 't'])
## Should scaling be consistent with GCB paper?
if (scaleGCB){
tpaRateSD <- 29.86784
baaRateSD <- 0.1498109
## Standardize the changes in each state variable
tOut$TPA_RATE <- tOut$CHNG_TPA / tpaRateSD / tOut$REMPER
tOut$BAA_RATE <- tOut$CHNG_BAA / baaRateSD / tOut$REMPER
} else {
## Standardize the changes in each state variable
tOut$TPA_RATE <- tOut$CHNG_TPA / sd(tOut$CHNG_TPA[tOut$PLOT_STATUS_CD == 1], na.rm = TRUE) / tOut$REMPER
tOut$BAA_RATE <- tOut$CHNG_BAA / sd(tOut$CHNG_BAA[tOut$PLOT_STATUS_CD == 1], na.rm = TRUE) / tOut$REMPER
tpaRateSD <- sd(tOut$CHNG_TPA[tOut$PLOT_STATUS_CD == 1], na.rm = TRUE)
baaRateSD <- sd(tOut$CHNG_BAA[tOut$PLOT_STATUS_CD == 1], na.rm = TRUE)
}
# Compute the SI
x = projectPnts(tOut$TPA_RATE, tOut$BAA_RATE, 1, 0)$x
y = x
M = sqrt(x^2 + y^2)
tOut$SI = if_else(x < 0, -M, M)
tOut <- select(tOut, YEAR, PLT_CN, any_of('PREV_PLT_CN'), grpBy[grpBy != 'YEAR'], SI, TPA_RATE, BAA_RATE, REMPER, everything())
## Make it spatial
if (returnSpatial){
tOut <- tOut %>%
filter(!is.na(LAT) & !is.na(LON)) %>%
st_as_sf(coords = c('LON', 'LAT'),
crs = '+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs')
grpBy <- grpBy[grpBy %in% c('LAT', 'LON') == FALSE]
}
## Population estimation
} else {
## back to dataframes
out <- unlist(out, recursive = FALSE)
a <- bind_rows(out[names(out) == 'a'])
t <- bind_rows(out[names(out) == 't'])
# ## Standardize the changes in each state variable AT THE PLOT LEVEL
if (scaleGCB){
tpaRateSD <- 29.86784
baaRateSD <- 0.1498109
## Standardize the changes in each state variable
t$TPA_RATE <- t$CHNG_TPA / tpaRateSD
t$BAA_RATE <- t$CHNG_BAA / baaRateSD
} else {
### CANNOT USE vectors as they are to compute SD, because of PLOT_BASIS issues
### SD is unnessarily high --> plot level first
pltRates <- t %>%
ungroup() %>%
select(PLT_CN, CHNG_TPA, CHNG_BAA, REMPER, n, plotIn, grpBy) %>%
group_by(PLT_CN, plotIn) %>%
summarize(t = sum(CHNG_TPA / REMPER, na.rm = TRUE),
n = sum(n, na.rm = TRUE),
b = sum(CHNG_BAA / REMPER, na.rm = TRUE) / n)
tpaRateSD <- sd(pltRates$t[pltRates$plotIn == 1], na.rm = TRUE)
baaRateSD <- sd(pltRates$b[pltRates$plotIn == 1], na.rm = TRUE)
## Standardize the changes in each state variable
t$TPA_RATE <- t$CHNG_TPA / tpaRateSD
t$BAA_RATE <- t$CHNG_BAA / baaRateSD
}
## Adding YEAR to groups
grpBy <- c('YEAR', grpBy)
#aGrpBy <- c('YEAR', aGrpBy)
## Splitting up by ESTN_UNIT
popState <- split(pops, as.factor(pops$STATECD))
suppressWarnings({
## Compute estimates in parallel -- Clusters in windows, forking otherwise
if (Sys.info()['sysname'] == 'Windows'){
# # Use the same cluster as above
# cl <- makeCluster(nCores)
# clusterEvalQ(cl, {
# library(dplyr)
# library(stringr)
# library(rFIA)
# })
out <- parLapply(cl, X = names(popState), fun = fsiHelper2, popState, a, t, grpBy, method)
stopCluster(cl)
} else { # Unix systems
out <- mclapply(names(popState), FUN = fsiHelper2, popState, a, t, grpBy, method, mc.cores = nCores)
}
})
## back to dataframes
out <- unlist(out, recursive = FALSE)
tEst <- bind_rows(out[names(out) == 'tEst'])
tEst <- ungroup(tEst)
##### ----------------- MOVING AVERAGES
if (str_to_upper(method) %in% c("SMA", 'EMA', 'LMA')){
### ---- SIMPLE MOVING AVERAGE
if (str_to_upper(method) == 'SMA'){
## Assuming a uniform weighting scheme
wgts <- pops %>%
group_by(ESTN_UNIT_CN) %>%
summarize(wgt = 1 / length(unique(INVYR)))
#aEst <- left_join(aEst, wgts, by = 'ESTN_UNIT_CN')
tEst <- left_join(tEst, wgts, by = 'ESTN_UNIT_CN')
#### ----- Linear MOVING AVERAGE
} else if (str_to_upper(method) == 'LMA'){
wgts <- pops %>%
distinct(YEAR, ESTN_UNIT_CN, INVYR, .keep_all = TRUE) %>%
arrange(YEAR, ESTN_UNIT_CN, INVYR) %>%
group_by(as.factor(YEAR), as.factor(ESTN_UNIT_CN)) %>%
mutate(rank = min_rank(INVYR))
## Want a number of INVYRs per EU
neu <- wgts %>%
group_by(ESTN_UNIT_CN) %>%
summarize(n = sum(rank, na.rm = TRUE))
## Rejoining and computing wgts
wgts <- wgts %>%
left_join(neu, by = 'ESTN_UNIT_CN') %>%
mutate(wgt = rank / n) %>%
ungroup() %>%
select(ESTN_UNIT_CN, INVYR, wgt)
#aEst <- left_join(aEst, wgts, by = c('ESTN_UNIT_CN', 'INVYR'))
tEst <- left_join(tEst, wgts, by = c('ESTN_UNIT_CN', 'INVYR'))
#### ----- EXPONENTIAL MOVING AVERAGE
} else if (str_to_upper(method) == 'EMA'){
wgts <- pops %>%
distinct(YEAR, ESTN_UNIT_CN, INVYR, .keep_all = TRUE) %>%
arrange(YEAR, ESTN_UNIT_CN, INVYR) %>%
group_by(as.factor(YEAR), as.factor(ESTN_UNIT_CN)) %>%
mutate(rank = min_rank(INVYR))
if (length(lambda) < 2){
## Want sum of weighitng functions
neu <- wgts %>%
mutate(l = lambda) %>%
group_by(ESTN_UNIT_CN) %>%
summarize(l = 1-first(lambda),
sumwgt = sum(l*(1-l)^(1-rank), na.rm = TRUE))
## Rejoining and computing wgts
wgts <- wgts %>%
left_join(neu, by = 'ESTN_UNIT_CN') %>%
mutate(wgt = l*(1-l)^(1-rank) / sumwgt) %>%
ungroup() %>%
select(ESTN_UNIT_CN, INVYR, wgt)
} else {
grpBy <- c('lambda', grpBy)
#aGrpBy <- c('lambda', aGrpBy)
## Duplicate weights for each level of lambda
yrWgts <- list()
for (i in 1:length(unique(lambda))) {
yrWgts[[i]] <- mutate(wgts, lambda = lambda[i])
}
wgts <- bind_rows(yrWgts)
## Want sum of weighitng functions
neu <- wgts %>%
group_by(lambda, ESTN_UNIT_CN) %>%
summarize(l = 1-first(lambda),
sumwgt = sum(l*(1-l)^(1-rank), na.rm = TRUE))
## Rejoining and computing wgts
wgts <- wgts %>%
left_join(neu, by = c('lambda', 'ESTN_UNIT_CN')) %>%
mutate(wgt = l*(1-l)^(1-rank) / sumwgt) %>%
ungroup() %>%
select(lambda, ESTN_UNIT_CN, INVYR, wgt)
}
#aEst <- left_join(aEst, wgts, by = c('ESTN_UNIT_CN', 'INVYR'))
tEst <- left_join(tEst, wgts, by = c('ESTN_UNIT_CN', 'INVYR'))
}
### Applying the weights
# Area
# aEst <- aEst %>%
# mutate_at(vars(aEst), ~(.*wgt)) %>%
# mutate_at(vars(aVar), ~(.*(wgt^2))) %>%
# group_by(ESTN_UNIT_CN, .dots = aGrpBy) %>%
# summarize_at(vars(aEst:plotIn_AREA), sum, na.rm = TRUE)
tEst <- tEst %>%
mutate_at(vars(ctEst:faEst), ~(.*wgt)) %>%
mutate_at(vars(ctVar:cvEst_si), ~(.*(wgt^2))) %>%
group_by(ESTN_UNIT_CN, .dots = grpBy) %>%
summarize_at(vars(ctEst:plotIn_t), sum, na.rm = TRUE)
}
##--------------------- TOTALS and RATIOS
# Tree
tTotal <- tEst %>%
group_by(.dots = grpBy) %>%
summarize_all(sum,na.rm = TRUE)
##--------------------- TOTALS and RATIOS
suppressWarnings({
tOut <- tTotal %>%
group_by(.dots = grpBy) %>%
summarize_all(sum,na.rm = TRUE) %>%
mutate(TPA_RATE = ctEst / ptEst,
BAA_RATE = cbEst / pbEst,
SI = siEst / faEst,
## Ratio variance
ctVar = (1/ptEst^2) * (ctVar + (TPA_RATE^2 * ptVar) - (2 * TPA_RATE * cvEst_ct)),
cbVar = (1/pbEst^2) * (cbVar + (BAA_RATE^2 * pbVar) - (2 * BAA_RATE * cvEst_cb)),
siVar = (1/faEst^2) * (siVar + (SI^2 * faVar) - (2 * SI * cvEst_si)),
## RATIO SE
TPA_RATE_SE = sqrt(ctVar) / abs(TPA_RATE) * 100,
BAA_RATE_SE = sqrt(cbVar) / abs(BAA_RATE) * 100,
SI_SE = sqrt(siVar) / abs(SI) * 100,
SI_VAR = siVar,
TPA_RATE_VAR = ctVar,
BAA_RATE_VAR = cbVar,
nPlots = plotIn_t,
N = nh,
#SI_INT1 = abs(SI) * 1.96 * SI_SE / 100,
SI_INT = qt(.975, df=N-1) * (sqrt(siVar)/sqrt(N))) %>%
mutate(SI_STATUS = case_when(
SI < 0 & SI + SI_INT < 0 ~ 'Decline',
SI < 0 & SI + SI_INT > 0 ~ 'Stable',
SI > 0 & SI - SI_INT > 0 ~ 'Expand',
TRUE ~ 'Stable'
))
})
if (totals) {
tOut <- tOut %>%
select(grpBy, SI, SI_STATUS, SI_INT, TPA_RATE, BAA_RATE,
SI_SE, TPA_RATE_SE, BAA_RATE_SE, SI_VAR, TPA_RATE_VAR, BAA_RATE_VAR,
nPlots, N)
} else {
tOut <- tOut %>%
select(grpBy, SI, SI_STATUS, SI_INT, TPA_RATE, BAA_RATE,
SI_SE, TPA_RATE_SE, BAA_RATE_SE, SI_VAR, TPA_RATE_VAR, BAA_RATE_VAR,
nPlots, N)
}
# Snag the names
tNames <- names(tOut)[names(tOut) %in% grpBy == FALSE]
}
## Pretty output
tOut <- tOut %>%
ungroup() %>%
mutate_if(is.factor, as.character) %>%
drop_na(grpBy) %>%
arrange(YEAR) %>%
as_tibble()
# Return a spatial object
if (!is.null(polys) & byPlot == FALSE) {
## NO IMPLICIT NA
nospGrp <- unique(grpBy[grpBy %in% c('SPCD', 'SYMBOL', 'COMMON_NAME', 'SCIENTIFIC_NAME') == FALSE])
nospSym <- syms(nospGrp)
tOut <- complete(tOut, !!!nospSym)
## If species, we don't want unique combos of variables related to same species
## but we do want NAs in polys where species are present
if (length(nospGrp) < length(grpBy)){
spGrp <- unique(grpBy[grpBy %in% c('SPCD', 'SYMBOL', 'COMMON_NAME', 'SCIENTIFIC_NAME')])
spSym <- syms(spGrp)
tOut <- complete(tOut, nesting(!!!nospSym))
}
suppressMessages({suppressWarnings({
tOut <- left_join(tOut, polys, by = 'polyID') %>%
select(c('YEAR', grpByOrig, tNames, names(polys))) %>%
filter(!is.na(polyID))})})
## Makes it horrible to work with as a dataframe
if (returnSpatial == FALSE) tOut <- select(tOut, -c(geometry))
} else if (!is.null(polys) & byPlot){
polys <- as.data.frame(polys)
tOut <- left_join(tOut, select(polys, -c(geometry)), by = 'polyID')
}
## For spatial plots
if (returnSpatial & byPlot) grpBy <- grpBy[grpBy %in% c('LAT', 'LON') == FALSE]
## Above converts to tibble
if (returnSpatial) tOut <- st_sf(tOut)
# ## remove any duplicates in byPlot (artifact of END_INYR loop)
if (byPlot) tOut <- unique(tOut)
## Standardization factors
tOut$tpaRateSD <- tpaRateSD
tOut$baaRateSD <- baaRateSD
return(tOut)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.