# @file randomForest.R
#
# Copyright 2020 Observational Health Data Sciences and Informatics
#
# This file is part of PatientLevelPrediction
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#' Create setting for random forest model with python (very fast)
#'
#' @param mtries The number of features to include in each tree (-1 defaults to square root of total features)
#' @param ntrees The number of trees to build
#' @param maxDepth Maximum number of interactions - a large value will lead to slow model training
#' @param varImp Perform an initial variable selection prior to fitting the model to select the useful variables
#' @param seed An option to add a seed when training the final model
#'
#' @examples
#' \dontrun{
#' model.rf <- setRandomForest(mtries=c(-1,5,20), ntrees=c(10,100),
#' maxDepth=c(5,20))
#' }
#' @export
setRandomForest <- function(mtries=-1,ntrees=500,maxDepth=c(4,10,17), varImp=T, seed=NULL){
# check seed is int
if(!class(seed)%in%c('numeric','NULL','integer'))
stop('Invalid seed')
if(!class(ntrees) %in% c("numeric", "integer"))
stop('ntrees must be a numeric value >0')
if(sum(ntrees < 0)>0)
stop('mtries must be greater that 0')
if(!class(mtries) %in% c("numeric", "integer"))
stop('mtries must be a numeric value >1 or -1')
if(sum(mtries < -1)>0)
stop('mtries must be greater that 0 or -1')
if(!class(maxDepth) %in% c("numeric", "integer"))
stop('maxDepth must be a numeric value >0')
if(sum(maxDepth < 1)>0)
stop('maxDepth must be greater that 0')
if(class(varImp)!="logical")
stop('varImp must be boolean')
# set seed
if(is.null(seed[1])){
seed <- as.integer(sample(100000000,1))
}
result <- list(model='fitRandomForest', param= expand.grid(ntrees=ntrees, mtries=mtries,
maxDepth=maxDepth, varImp=varImp,
seed= seed[1]),
name='Random forest')
class(result) <- 'modelSettings'
return(result)
}
fitRandomForest <- function(population, plpData, param, search='grid', quiet=F,
outcomeId, cohortId, ...){
covariateRef <- as.data.frame(plpData$covariateData$covariateRef)
e <- environment()
# check logger
if(length(ParallelLogger::getLoggers())==0){
logger <- ParallelLogger::createLogger(name = "SIMPLE",
threshold = "INFO",
appenders = list(ParallelLogger::createConsoleAppender(layout = ParallelLogger::layoutTimestamp)))
ParallelLogger::registerLogger(logger)
}
# check plpData is libsvm format:
if (!FeatureExtraction::isCovariateData(plpData$covariateData)){
stop("Needs correct covariateData")
}
if(colnames(population)[ncol(population)]!='indexes'){
ParallelLogger::logWarn(paste0('population columns: ', paste0(colnames(population), collapse='-')))
warning('indexes column not present as last column - setting all index to 1')
population$indexes <- rep(1, nrow(population))
}
pQuiet <- 'True'
if(quiet==F){
ParallelLogger::logTrace(paste0('Training random forest model...' ))
#PythonInR::pyExec('quiet = False')
pQuiet <- 'False'
}
start <- Sys.time()
# make sure population is ordered?
population$rowIdPython <- population$rowId-1 # -1 to account for python/r index difference
#PythonInR::pySet('population', as.matrix(population[,c('rowIdPython','outcomeCount','indexes')]) )
pPopulation <- as.matrix(population[,c('rowIdPython','outcomeCount','indexes')])
# set seed
if(param$seed[1] == 'NULL'){
pSeed <- as.integer(sample(100000000,1))
}
if(param$seed[1]!='NULL'){
pSeed <- as.integer(param$seed[1])
}
# convert plpData in coo to python:
ParallelLogger::logTrace('Mapping R data to python')
#x <- toSparsePython2(plpData,population, map=NULL)
prediction <- population
x <- toSparseM(plpData,population,map=NULL, temporal = F)
reticulate::source_python(system.file(package='PatientLevelPrediction','python','randomForestFunctions.py'), envir = e)
data <- reticulate::r_to_py(x$data)
#do var imp
if(param$varImp[1]==T){
# python checked in .set
varImp <- rf_var_imp(population = pPopulation,
plpData = data,
quiet=pQuiet)
if(!quiet)
ParallelLogger::logTrace('Variable importance completed')
if(mean(varImp)==0)
stop('No important variables - seems to be an issue with the data')
incRInd <- which(varImp>mean(varImp), arr.ind=T)
# save mapping, missing, indexes
} else{
incRInd <- 1:nrow(covariateRef)
}
# save the model to outLoc
outLoc <- createTempModelLoc()
# clear the existing model pickles
for(file in dir(outLoc))
file.remove(file.path(outLoc,file))
# run rf_plp for each grid search:
all_auc <- c()
all_cvAuc <- c()
bestAUC <- 0
for(i in 1:nrow(param)){
# then run standard python code
pred <- train_rf(population=pPopulation,
plpData = data,
ntrees = as.integer(param$ntree[i]),
max_depth = as.integer(param$maxDepth[i]),
mtry = param$mtries[i],
included = as.matrix(incRInd-1),
seed = pSeed,
quiet='False')
colnames(pred) <- c('rowId','outcomeCount','indexes', 'value')
pred <- as.data.frame(pred)
attr(pred, "metaData") <- list(predictionType="binary")
aucCV <- lapply(1:max(pred$indexes), function(i){computeAuc(pred[pred$indexes==i,])})
aucCV <- unlist(aucCV)
all_cvAuc <- rbind(all_cvAuc, aucCV)
auc <- computeAuc(pred)
all_auc <- c(all_auc, auc)
if(auc > bestAUC){
bestAUC <- auc
cvPrediction <- pred[pred$indexes>0,] # need to convert rowId-1?
}
if(!quiet)
ParallelLogger::logInfo(paste0('Model with settings: ntrees:',param$ntrees[i],' maxDepth: ',param$maxDepth[i],
'mtry: ', param$mtry[i] , ' obtained AUC of ', auc))
}
colnames(all_cvAuc) <- paste0('fold_auc', 1:ncol(all_cvAuc))
hyperSummary <- cbind(param, all_cvAuc, auc=all_auc)
# now train the final model for the best hyper-parameters previously found
#reticulate::source_python(system.file(package='PatientLevelPrediction','python','finalRandomForest.py'), envir = e)
result <- final_rf(population=pPopulation,
plpData = data,
ntrees = as.integer(param$ntree[which.max(all_auc)]),
max_depth = as.integer(param$maxDepth[which.max(all_auc)]),
mtry = as.integer(param$mtries[which.max(all_auc)]),
included = as.matrix(incRInd-1),
modelOutput = outLoc,
seed = pSeed,
quiet='False')
pred <- result[[1]]
varImp <- result[[2]]
modelTrained <- file.path(outLoc) # location
param.best <- param[which.max(all_auc),]
variableImportance <- rep(0, nrow(covariateRef))
variableImportance[incRInd] <- varImp
incs <- rep(0, nrow(covariateRef))
incs[incRInd] <- 1
covariateRef <- cbind(covariateRef, incs, variableImportance)
colnames(covariateRef) <- c('covariateId','covariateName','analysisId','conceptId','included','covariateValue')
comp <- start-Sys.time()
pred[,1] <- pred[,1] + 1 # converting from python to r index
colnames(pred) <- c('rowId','outcomeCount','indexes', 'value')
pred <- as.data.frame(pred)
attr(pred, "metaData") <- list(predictionType="binary")
prediction <- merge(prediction, pred[,c('rowId', 'value')], by='rowId')
# return model location
result <- list(model = modelTrained,
trainCVAuc = list(value = all_cvAuc[which.max(all_auc),],
prediction = cvPrediction),
modelSettings = list(model='randomForest_python',modelParameters=param.best),
hyperParamSearch = hyperSummary,
metaData = plpData$metaData,
populationSettings = attr(population, 'metaData'),
outcomeId=outcomeId,
cohortId=cohortId,
varImp = covariateRef,
trainingTime =comp,
dense=0,
covariateMap=x$map,
predictionTrain = prediction
)
class(result) <- 'plpModel'
attr(result, 'type') <- 'pythonReticulate'
attr(result, 'predictionType') <- 'binary'
return(result)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.