# @file SVM.R
#
# Copyright 2020 Observational Health Data Sciences and Informatics
#
# This file is part of PatientLevelPrediction
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#' Create setting for SVM with python
#' @param kernal Specifies the kernel type to be used in the algorithm. one of ‘linear’, ‘poly’, ‘rbf’, ‘sigmoid’, ‘precomputed’. If none is given ‘rbf’ will be used.
#' @param C penalty parameter C of the error term.
#' @param degree degree of kernel function is significant only in poly, rbf, sigmoid
#' @param gamma kernel coefficient for rbf and poly, by default 1/n_features will be taken.
#' @param shrinking wether to use the shrinking heuristic.
#' @param coef0 independent term in kernel function. It is only significant in poly/sigmoid.
#' @param classWeight Class weight based on imbalance either 'balanced' or 'none'
#' @param varImp Whether to calculate the variable importance using PFI
#' @param seed A seed for the model
#'
#' @examples
#' \dontrun{
#' model.svm <- setSVM(kernel='rbf', seed = NULL)
#' }
#' @export
setSVM <- function(kernel='rbf', C=c(1,0.9,2,0.1), degree=c(1,3,5),
gamma=c(1e-04, 3e-05, 0.001, 0.01,0.25),
shrinking = T, coef0=0.0,
classWeight = 'balanced', varImp = F, seed = NULL) {
if (!class(seed) %in% c("numeric", "NULL", "integer"))
stop("Invalid seed")
if (!kernel %in% c("rbf", 'linear', 'poly', 'sigmoid', 'precomputed'))
stop("Invalid kernel")
if (!class(C) %in% c("numeric", "integer"))
stop("C must be a numeric value >0 ")
if (min(C) < 0)
stop("C must be greater than 0")
if (!class(degree) %in% c("numeric", "integer"))
stop("degree must be an integer")
if (!class(gamma) %in% c("numeric", "integer"))
stop("gamma must be a numeric value >0 ")
if (min(gamma) < 0)
stop("gamma must be greater than 0")
if (!class(shrinking) %in% c("logical"))
stop("shrinking must be T or F ")
if (!class(coef0) %in% c("numeric", "integer"))
stop("coef0 must be a numeric value ")
if(sum(classWeight%in%c('none','balanced'))!=length(classWeight)){
stop("classWeight must be 'balanced' or 'none' ")
}
# set seed
if(is.null(seed[1])){
seed <- as.integer(sample(100000000,1))
}
result <- list(model = "fitSVM",
param = split(expand.grid(kernel = kernel,
C = C,
degree = degree,
gamma = gamma,
shrinking = shrinking,
coef0 = coef0,
classWeight = classWeight,
varImp = varImp[1],
seed = seed[1]), 1:(length(kernel) * length(C) * length(degree) * length(gamma) * length(shrinking) * length(coef0) * length(classWeight) )),
name = "SVM")
class(result) <- "modelSettings"
return(result)
}
fitSVM <- function(population,
plpData,
param,
search = "grid",
quiet = F,
outcomeId,
cohortId,
...) {
# check covariate data
if (!FeatureExtraction::isCovariateData(plpData$covariateData))
stop("Needs correct covariateData")
if (colnames(population)[ncol(population)] != "indexes") {
warning("indexes column not present as last column - setting all index to 1")
population$indexes <- rep(1, nrow(population))
}
start <- Sys.time()
population$rowIdPython <- population$rowId - 1 # -1 to account for python/r index difference
pPopulation <- as.matrix(population[,c('rowIdPython','outcomeCount','indexes')])
# convert plpData in coo to python:
x <- toSparseM(plpData, population, map = NULL)
data <- reticulate::r_to_py(x$data)
# save the model to outLoc TODO: make this an input or temp location?
outLoc <- createTempModelLoc()
# clear the existing model pickles
for(file in dir(outLoc))
file.remove(file.path(outLoc,file))
# do cross validation to find hyperParameter
hyperParamSel <- lapply(param, function(x) do.call(trainSVM, listAppend(x,
list(train = TRUE,
population=pPopulation,
plpData=data,
quiet=quiet))))
cvAuc <- do.call(rbind, lapply(hyperParamSel, function(x) x$aucCV))
colnames(cvAuc) <- paste0('fold_auc', 1:ncol(cvAuc))
auc <- unlist(lapply(hyperParamSel, function(x) x$auc))
cvPrediction <- lapply(hyperParamSel, function(x) x$prediction )
cvPrediction <- cvPrediction[[which.max(auc)[1]]]
hyperSummary <- cbind(do.call(rbind, param), cvAuc, auc= auc)
writeLines('Training Final')
# now train the final model and return coef
bestInd <- which.max(abs(auc - 0.5))[1]
finalModel <- do.call(trainSVM, listAppend(param[[bestInd]],
list(train = FALSE,
modelLocation=outLoc,
population=pPopulation,
plpData=data,
quiet=quiet)))
covariateRef <- as.data.frame(plpData$covariateData$covariateRef)
incs <- rep(1, nrow(covariateRef))
covariateRef$included <- incs
# get the coefs and do a basic variable importance:
if(param[[1]]$varImp){
varImp <- finalModel[[2]] #rep(1, nrow(covariateRef))# SVC doesnt calculate var imp
varImp[is.na(varImp)] <- 0
covariateRef$covariateValue <- unlist(varImp)
pred <- finalModel[[1]]
} else{
covariateRef$covariateValue <- rep(1, nrow(covariateRef))
pred <- finalModel
}
# select best model and remove the others (!!!NEED TO EDIT THIS)
modelTrained <- file.path(outLoc)
param.best <- param[[bestInd]]
comp <- start - Sys.time()
# train prediction
pred[,1] <- pred[,1] + 1 # converting from python to r index
colnames(pred) <- c('rowId','outcomeCount','indexes', 'value')
pred <- as.data.frame(pred)
attr(pred, "metaData") <- list(predictionType="binary")
prediction <- merge(population, pred[,c('rowId', 'value')], by='rowId')
# return model location (!!!NEED TO ADD CV RESULTS HERE)
result <- list(model = modelTrained,
trainCVAuc = list(value = unlist(cvAuc[bestInd,]),
prediction = cvPrediction),#hyperParamSel,
hyperParamSearch = hyperSummary,
modelSettings = list(model = "fitSVM", modelParameters = param.best),
metaData = plpData$metaData,
populationSettings = attr(population, "metaData"),
outcomeId = outcomeId,
cohortId = cohortId,
varImp = covariateRef,
trainingTime = comp,
dense = 0,
covariateMap = x$map,
predictionTrain=prediction)
class(result) <- "plpModel"
attr(result, "type") <- "pythonReticulate"
attr(result, "predictionType") <- "binary"
return(result)
}
trainSVM <- function(population, plpData,
kernel='rbf', C= 1, degree= 3, gamma=3e-05, shrinking = T, coef0=0.0,classWeight = T, varImp = T,
seed = NULL, train = TRUE, modelLocation=NULL, quiet=FALSE) {
e <- environment()
# then run standard python code
reticulate::source_python(system.file(package='PatientLevelPrediction','python','svmFunctions.py'), envir = e)
result <- train_svm(population=population,
plpData=plpData,
train = train,
kernel = kernel,
C = as.numeric(C),
degree = as.integer(degree),
gamma = as.numeric(gamma),
shrinking = shrinking,
coef0 = as.numeric(coef0),
classWeight = classWeight,
modelOutput = modelLocation,
seed = as.integer(seed),
varImp = varImp,
quiet = quiet)
if (train) {
# then get the prediction
pred <- result
colnames(pred) <- c("rowId", "outcomeCount", "indexes", "value")
pred <- as.data.frame(pred)
attr(pred, "metaData") <- list(predictionType = "binary")
aucCV <- lapply(1:max(pred$indexes), function(i){computeAuc(pred[pred$indexes==i,])})
auc <- computeAuc(pred)
writeLines(paste0("CV model obtained CV AUC of ", auc))
return(list(auc = auc, aucCV = aucCV, prediction = pred[pred$indexes>0,]))
}
return(result)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.