View source: R/metrop_hier_priors.R
run_metrop_priors | R Documentation |
Run the hierarchical Metropolis Hastings model to infer priors
run_metrop_priors(
multi.dat,
covar = FALSE,
covar_vec = NULL,
is_covar_categorical = FALSE,
nits = 10000,
thin = 1,
posterior = FALSE,
avg_pik = TRUE,
avg_posterior = TRUE,
pik = FALSE,
alpha_mean = -10,
alpha_sd = 0.5,
beta_shape = 2,
beta_scale = 2,
gamma_shape = 2,
gamma_scale = 2
)
multi.dat |
matrix of bf values, rows=traits, named columns=("lBF.Ha","lBF.Hc","nsnps") |
covar |
whether to include covariates |
covar_vec |
vector of covariates |
is_covar_categorical |
only two categories supported (default=FALSE) - Experimental |
nits |
number of iterations |
thin |
burnin |
posterior |
default: FALSE, estimate posterior probabilities of the hypotheses |
avg_pik |
default: FALSE, estimate the average of the pik |
avg_posterior |
default: FALSE, estimate the average of the posterior probabilities of the hypotheses |
pik |
default: FALSE, inferred prior probabilities |
alpha_mean |
prior for the mean of alpha |
alpha_sd |
prior for the standard deviation of alpha |
beta_shape |
prior for the shape (gamma distibution) of beta |
beta_scale |
prior for the scale of beta |
gamma_shape |
prior for the shape (gamma distibution) of gamma |
gamma_scale |
prior for the scale of gamma |
List containing the posterior distribution of the parameters alpha, beta, gamma (if covariate included) and the loglikelihood
if avg_posterior=TRUE matrix with average of all the posterior probabilities of Hn, Ha and Hc
if avg_pik=TRUE matrix with average of all the priors: pn, pa and pc
data, nits and thin contain the input data, number of iterations and burnin respectively specified for the hierarchical model
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.