pseudobulk_deseq2 | R Documentation |
Pseudobulk DESeq2
pseudobulk_deseq2(
dge_formula,
meta_data,
counts_df,
verbose = TRUE,
min_counts_per_sample = 10,
present_in_min_samples = 5,
collapse_background = TRUE,
vals_test = NULL,
mode = c("one_vs_all", "pairwise", "within")[1]
)
dge_formula |
differential gene expression formula for DESeq2 |
meta_data |
data.frame of cell metadata |
counts_df |
A feature-by-sample matrix |
verbose |
verbose |
min_counts_per_sample |
minimum counts per sample to include in differential gene expression |
present_in_min_samples |
minimum samples with gene counts to include in differential gene expression |
collapse_background |
collapse background. Default is 'TRUE' |
vals_test |
cell metadata columns |
mode |
kind of pseudobulk testing to perform. One of 'one_vs_all', 'pairwise', or 'within' |
## Not run:
m <- matrix(sample.int(8, 100*500, replace=TRUE),nrow=100, ncol=500)
rownames(m) <- paste0("G", 1:100)
colnames(m) <- paste0("C", 1:500)
md1 <- sample(c("a", "b"), 500, replace=TRUE)
md2 <- sample(c("c", "d"), 500, replace=TRUE)
df <- data.frame(md1, md2)
data_collapsed <- collapse_counts(m, df, c("md1", "md2"))
res_mat <- pseudobulk_deseq2(
~md1 + md1,
data_collapsed$meta_data,
data_collapsed$counts_mat,
verbose = TRUE,
present_in_min_samples = 1
)
head(res_mat)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.