snowcrab_load_key_results_to_memory = function(
year.assessment=2023,
envir = parent.frame(),
debugging=FALSE,
return_as_list=TRUE ) {
# function to bring in key fishery stats and assessment results and make available in memory
# primary usage is for Rmarkdown documents
year_previous = year.assessment - 1
p = bio.snowcrab::load.environment( year.assessment=year.assessment )
SCD = project.datadirectory("bio.snowcrab")
FD = fishery_data() # mass in tonnes
fda = FD$summary_annual
l_nens = round(fda$landings[which(fda$region=="cfanorth" & fda$yr==year.assessment)], 1)
l_sens = round(fda$landings[which(fda$region=="cfasouth" & fda$yr==year.assessment)], 1)
l_4x = round(fda$landings[which(fda$region=="cfa4x" & fda$yr==year.assessment)], 1)
l_nens_p = round(fda$landings[which(fda$region=="cfanorth" & fda$yr==year_previous)], 1)
l_sens_p = round(fda$landings[which(fda$region=="cfasouth" & fda$yr==year_previous)], 1 )
l_4x_p = round(fda$landings[which(fda$region=="cfa4x" & fda$yr==year_previous)], 1)
dt_l_nens = round((l_nens - l_nens_p) / l_nens_p *100, 1 )
dt_l_sens = round((l_sens - l_sens_p) / l_sens_p *100, 1 )
dt_l_4x = round((l_4x - l_4x_p) / l_4x_p *100, 1 )
e_nens = round(fda$effort[which(fda$region=="cfanorth" & fda$yr==year.assessment)], 3)
e_sens = round(fda$effort[which(fda$region=="cfasouth" & fda$yr==year.assessment)], 3)
e_4x = round(fda$effort[which(fda$region=="cfa4x" & fda$yr==year.assessment)], 3)
e_nens_p = round(fda$effort[which(fda$region=="cfanorth" & fda$yr==year_previous)], 3)
e_sens_p = round(fda$effort[which(fda$region=="cfasouth" & fda$yr==year_previous)], 3)
e_4x_p = round(fda$effort[which(fda$region=="cfa4x" & fda$yr==year_previous)], 3)
dt_e_nens = round(( e_nens - e_nens_p ) /e_nens_p * 100, 1 )
dt_e_sens = round(( e_sens - e_sens_p ) /e_sens_p * 100, 1 )
dt_e_4x = round(( e_4x - e_4x_p ) /e_4x_p * 100, 1 )
c_nens = round(fda$cpue[which(fda$region=="cfanorth" & fda$yr==year.assessment)], 2)
c_sens = round(fda$cpue[which(fda$region=="cfasouth" & fda$yr==year.assessment)], 2)
c_4x = round(fda$cpue[which(fda$region=="cfa4x" & fda$yr==year.assessment)], 2)
c_nens_p = round(fda$cpue[which(fda$region=="cfanorth" & fda$yr==year_previous)], 2)
c_sens_p = round(fda$cpue[which(fda$region=="cfasouth" & fda$yr==year_previous)], 2)
c_4x_p = round(fda$cpue[which(fda$region=="cfa4x" & fda$yr==year_previous)], 2)
dt_c_nens = round(( c_nens - c_nens_p ) /c_nens_p * 100, 1 )
dt_c_sens = round(( c_sens - c_sens_p ) /c_sens_p * 100, 1 )
dt_c_4x = round(( c_4x - c_4x_p ) /c_4x_p * 100, 1 )
dt = as.data.frame( fda[ which(fda$yr %in% c(year.assessment - c(0:10))),] )
dt = dt[,c("region", "yr", "Licenses", "TAC", "landings", "effort", "cpue")]
names(dt) = c("Region", "Year", "Licenses", "TAC", "Landings", "Effort", "CPUE")
rownames(dt) = NULL
tac_nens = fda$TAC[which(fda$yr==year.assessment & fda$region=="cfanorth")]
tac_sens = fda$TAC[which(fda$yr==year.assessment & fda$region=="cfasouth")]
tac_4x = fda$TAC[which(fda$yr==year.assessment & fda$region=="cfa4x")] # 4x is refered by start year
tac_4x_p = fda$TAC[which(fda$yr==year_previous & fda$region=="cfa4x")] # 4x is refered by start year
fda = NULL
scn = FD$shell_condition
cc_soft_nens = scn[ region=="cfanorth" & fishyr==year.assessment & shell %in% c(1,2), sum(percent)]
cc_soft_sens = scn[ region=="cfasouth" & fishyr==year.assessment & shell %in% c(1,2), sum(percent)]
cc_soft_4x = scn[ region=="cfa4x" & fishyr==year.assessment & shell %in% c(1,2), sum(percent)]
cc_soft_nens_p = scn[ region=="cfanorth" & fishyr==year_previous & shell %in% c(1,2), sum(percent)]
cc_soft_sens_p = scn[ region=="cfasouth" & fishyr==year_previous & shell %in% c(1,2), sum(percent)]
cc_soft_4x_p = scn[ region=="cfa4x" & fishyr==year_previous & shell %in% c(1,2), sum(percent)]
scn = NULL
# here mean is used to force result as a scalar
fob = FD$fraction_observed
observed_nens = fob[ region=="cfanorth" & yr==year.assessment, mean(observed_landings_pct, na.rm=TRUE) ]
observed_sens = fob[ region=="cfasouth" & yr==year.assessment, mean(observed_landings_pct, na.rm=TRUE) ]
observed_4x = fob[ region=="cfa4x" & yr==year.assessment, mean(observed_landings_pct, na.rm=TRUE) ]
observed_nens_p = fob[ region=="cfanorth" & yr==year_previous, mean(observed_landings_pct, na.rm=TRUE) ]
observed_sens_p = fob[ region=="cfasouth" & yr==year_previous, mean(observed_landings_pct, na.rm=TRUE) ]
observed_4x_p = fob[ region=="cfa4x" & yr==year_previous, mean(observed_landings_pct, na.rm=TRUE) ]
fob = NULL
method = "logistic_discrete_historical"
loc = file.path(SCD, "fishery_model", year.assessment, method )
b1north = fread( file.path(loc, "results_turing_cfanorth_bio_fishing.csv"), header=TRUE, sep=";" )
b1south = fread( file.path(loc, "results_turing_cfasouth_bio_fishing.csv"), header=TRUE, sep=";" )
b14x = fread( file.path(loc, "results_turing_cfa4x_bio_fishing.csv"), header=TRUE, sep=";" )
t1 = which(p$yrs == p$year.assessment -1 )
t0 = which(p$yrs == p$year.assessment )
B_north = rowMeans(b1north, na.rm=TRUE )
B_south = rowMeans(b1south, na.rm=TRUE )
B_4x = rowMeans(b14x, na.rm=TRUE )
B_north_sd = apply(b1north, 1, sd, na.rm=TRUE )
B_south_sd = apply(b1south, 1, sd, na.rm=TRUE )
B_4x_sd = apply(b14x, 1, sd, na.rm=TRUE )
fmnorth = fread( file.path(loc, "results_turing_cfanorth_fm.csv"), header=TRUE, sep=";" )
fmsouth = fread( file.path(loc, "results_turing_cfasouth_fm.csv"), header=TRUE, sep=";" )
fm4x = fread( file.path(loc, "results_turing_cfa4x_fm.csv"), header=TRUE, sep=";" )
t1 = which(p$yrs == p$year.assessment -1 )
t0 = which(p$yrs == p$year.assessment )
FM_north = rowMeans(fmnorth, na.rm=TRUE )
FM_south = rowMeans(fmsouth, na.rm=TRUE )
FM_4x = rowMeans(fm4x, na.rm=TRUE )
FM_north_sd = apply(fmnorth, 1, sd, na.rm=TRUE )
FM_south_sd = apply(fmsouth, 1, sd, na.rm=TRUE )
FM_4x_sd = apply(fm4x, 1, sd, na.rm=TRUE )
fsnorth = fread( file.path(loc, "results_turing_cfanorth_summary.csv"), header=TRUE, sep=";" )
fssouth = fread( file.path(loc, "results_turing_cfasouth_summary.csv"), header=TRUE, sep=";" )
fs4x = fread( file.path(loc, "results_turing_cfa4x_summary.csv"), header=TRUE, sep=";" )
t1 = which(p$yrs == p$year.assessment -1 )
t0 = which(p$yrs == p$year.assessment )
Knorth = fsnorth[which(fsnorth$parameters=="K"),]
Ksouth = fssouth[which(fssouth$parameters=="K"),]
K4x = fs4x[which(fs4x$parameters=="K"),]
K_north = round(Knorth[["mean"]], 2 )
K_south = round(Ksouth[["mean"]], 2 )
K_4x = round(K4x[["mean"]], 2 )
K_north_sd = round(Knorth[["std"]], 2 )
K_south_sd = round(Ksouth[["std"]], 2 )
K_4x_sd = round(K4x[["std"]], 2 )
rnorth = fsnorth[which(fsnorth$parameters=="r"),]
rsouth = fssouth[which(fssouth$parameters=="r"),]
r4x = fs4x[which(fs4x$parameters=="r"),]
r_north = round(rnorth[["mean"]], 2 )
r_south = round(rsouth[["mean"]], 2 )
r_4x = round(r4x[["mean"]], 2 )
r_north_sd = round(rnorth[["std"]], 2 )
r_south_sd = round(rsouth[["std"]], 2 )
r_4x_sd = round(r4x[["std"]], 2 )
qnorth = fsnorth[which(fsnorth$parameters=="q1"),]
qsouth = fssouth[which(fssouth$parameters=="q1"),]
q4x = fs4x[which(fs4x$parameters=="q1"),]
q_north = round(qnorth[["mean"]], 2 )
q_south = round(qsouth[["mean"]], 2 )
q_4x = round(q4x[["mean"]], 2 )
q_north_sd = round(qnorth[["std"]], 2 )
q_south_sd = round(qsouth[["std"]], 2 )
q_4x_sd = round(q4x[["std"]], 2 )
if (return_as_list) {
return( invisible( as.list( environment() ) ) )
} else {
return( invisible( list2env(as.list(environment()), envir) ) )
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.